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optar al grado de Maǵıster en Ciencias F́ısicas, en el examen de Defensa de Tesis

rendido el d́ıa 07 de Enero de 2025.

Directores de Tesis

Dra. Carla Hermann

Dr. Stephen Walborn

Comisión de Evaluación de la Tesis

Dra. Carla Hermann

Dr. Stephen Walborn

Dr. Pablo Solano

Dr. Marcel Clerc (Presidente)





ii

Le dedico esta tesis a mi abuela. En su d́ıa tome el maǵıster para poder cuidarla un
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RESUMEN

Esta tesis explora la integración de recursos cuánticos en sistemas interférometricos

basados en fibras de multinúcleo para mejorar las capacidades de medición de preci-

sión y múltiples parámetros. Utilizando divisores de haz multi-puerto, investigamos

anaĺıticamente la propagación de estados cuánticos y su impacto en el rendimiento

metrológico y computacional. Estudios anaĺıticos y numéricos de interferómetros de

Mach-Zehnder revelan configuraciones que optimizan la eficiencia, precisión y/o ro-

bustez para la estimación de parámetros tanto individuales como múltiples. Además,

se presenta una caracterización experimental preliminar de un controlador de polari-

zación inline en fibras multinúcleo, ofreciendo el potencial para mejorar la calidad de

la interferencia y para futuras aplicaciones en comunicaciones cuánticas. Estos ha-

llazgos sientan las bases para el avance de las tecnoloǵıas cuánticas basadas en fibras

multinúcleo, con potenciales aplicaciones en sensores, comunicación y computación.

ABSTRACT

This thesis explores the integration of quantum resources into multi-core fiber-based

interferometric systems to enhance precision and multi-parameter measurement ca-

pabilities. Using multi-port beam splitters, we analytically investigate the propaga-

tion of quantum states and their impact on metrological and computational per-

formances. Analytical and numerical studies of multi-port Mach-Zehnder interfe-

rometers reveal configurations that optimize efficiency, precision and/or robustness

for both single- and multi-parameter estimation. Additionally, a preliminary expe-

rimental characterization of an inline polarization controller in multi-core fibers is

presented, offering potential for improved interference quality and future quantum

communication applications. These findings lay the foundation for advancing multi-

core fiber-based quantum technologies, with potential applications in sensing, com-

munication, and computation.



Chapter 1

Introduction

1.1. Background and Motivation

The demand for enhanced information transmission and precision measurement

has driven the development of advanced optical and quantum technologies. Yet, some

of this technologies face significant challenges. For instance, standard single-mode fi-

bers (SMFs), which dominate the field, are limited by their capacity to support only

a single spatial mode, leading to saturation in data transmission rates and reduced

efficiency. In this context, space-division multiplexing (SDM) represents a solution to

current limitations by enabling increased data transmission in available devices [2].

Among these, multi-core fibers (MCFs) [3,4] have emerged as a promising candidate

due to their ability to support multiple independent spatial modes, compactness, and

stability. These fibers not only address the capacity limitations of standard SMFs,

but also open pathways for integrating sensing, communication, and computational

technologies.

In parallel, interferometers, such as Mach-Zehnder interferometers (MZIs) [5] or

Michelson interferometers [6], play a pivotal role in optical systems for precision

1
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measurement. These devices extract information of a phenomenon that produces

a change in propagating light from the resulting interference pattern. Integrating

interferometric systems into optical fibers brings numerous advantages, such as en-

hanced stability and spatial freedom. Phenomena like temperature changes, torsions,

imperfections, voltages, etc., produce variations in fiber length or refractive index.

These variations are detectable from the interference patterns with high precision by

several methods [7–10].

Moreover, MCFs enable a powerful combination of SDM and interferometric sys-

tems. By assigning individual cores to interferometric arms, MCFs facilitate compact

and robust setups. Additionally, due to the cores being displaced from the fiber’s

center, MCFs offer enhanced precision in response to external perturbations, such as

flexion, tension, curvature [8,11], vibration [12,13], torsion [14,15], fluid flux [11,16],

etc. Interferometric sensors implemented in MCFs have enabled the development of

highly precise measurements of environmental factors like temperature [17, 18], gas

concentration [19], refractive index [20,21], etc. Further exploring MCF-based inter-

ferometers will lead to strong metrological applications.

Despite the remarkable capabilities of MCF-based interferometers, as in any phy-

sical system, their precision is fundamentally constrained by the Heisenberg uncer-

tainty principle. This principle states states that there is a limit to which a pair of

conjugate physical quantities can be simultaneously known. When using only clas-

sical states (coherent light), the precision achievable is bounded by the standard

quantum limit (SQL) [22]. It states that the uncertainty achievable in a measure-

ment scales as 1√
N
, where N is the photon number in the system (or energy in the
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system). This is the precision limitation in classical metrology.

However, using inherently quantum states provides a pathway to surpass the

SQL by redistributing uncertainties and thus exploiting the Heisenberg uncertainty

principle. For example, squeezed states achieve enhanced precision in one variable at

the expense of increased uncertainty in its conjugate variable. For squeezed states,

the precision scales as e−r
√
N
, where r is the squeezing parameter. Furthermore, when

using Fock states, the uncertainty scales as 1
N
. This is known as the Heisenberg li-

mit [22], an unbreakable precision limit that emerges directly from the Heisenberg

uncertainty principle. Leveraging these advantages, interferometers serve as crucial

tools in quantum metrology, enabling significant uncertainty reduction.

To construct advanced interferometers, a deep understanding of beam splitters

(BSs) is essential. For SDM purposes in MCFs, this requires the use of multi-port

beam splitters (MBSs). These devices are not only critical components for routing

and manipulating light but also hold significant applications in quantum state engi-

neering [23–25] and quantum information through the application of unitary trans-

formations [1]. Therefore, the propagation of quantum states and the implementation

of MBSs in MCFs are crucial for the outcomes of this thesis.

Additionally, orthogonal polarizations propagated along the arms of the interfero-

meter do not interfere, so in order to successfully make interference-based processes,

some control over the polarization is required. Changes and/or fluctuations in light

polarization lead to several errors in potential measurements [26–28]. In this thesis,

one of the focuses is placed on the inline polarization controller (IPC), a device ca-

https://www.thorlabs.com
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pable of controlling the polarization directly within the fiber through stress-induced

birefringence. Its action is well known for a SMF. However, for a MCF, characte-

rization of the IPC has not yet been documented in the literature. Achieving this

characterization will lead to polarization control over multiple signals simultaneously,

providing applications for quantum metrology, by allowing effective interference, and

quantum communications, since information can be encoded in the state of polari-

zation.

The general objective of this thesis is to advance the development of precision

optical sensors integrated into MCFs, by leveraging on quantum resources to achieve

enhanced precision, characterizing propagation through MBSs, and enabling polari-

zation control in MCFs. Since the later is needed to some extent to experimentally

realize interferometry, this thesis consists of theoretical work regarding MBSs and

MZIs, done in the meantime of an experimental work, regarding polarization con-

trol in MCFs. Specifically, this thesis seeks to analytically and numerically explo-

re a multi-port MZI, focusing on enhancing precision with classical and quantum

resources (coherent and squeezed states). To achieve this, we explore possible pa-

rameterizations, configurations for the input state, and measurable operators. We

found favorable scenarios for single- and multi-parameter estimation with enhanced

and/or robust uncertainties, comparable with the standard 2-port interferometer.

Additionally, we analytically study the implementation of MBSs in MCFs by mode-

ling them as coupled waveguide arrays (approach that comes from their experimen-

tal implementation [1]), focusing on their potential to manipulate quantum states

and perform unitary transformations. The results propose a perspective for studying

squeezing dynamics in such system from conserved quantities, and highlight MBSs
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integrated into MCFs as a viable device to implement any balanced unitary transfor-

mation, particularly a Fourier transform. Finally, this thesis aims to experimentally

characterize the transformation of the IPC on each core of a 4-core MCF, enabling

effective interference and communications systems. A toy model to characterize the-

se transformations based on the SMF transformation is proposed, with results that

could later lead to a more accurate model. However, enough data to use quantum

process tomography has already been gathered. We will proceed with this in the near

future.

The findings presented in this thesis are not only fundamental for advancing

the precision and functionality of MCF-based systems but also promise for real-

world applications in sensing, communication, and quantum information processing.

By addressing critical challenges—such as enhanced precision through quantum re-

sources, effective beam splitter implementations, and polarization control—this work

paves the way for the practical integration of MCF-based technologies into advanced

metrological and computational systems. The potential applications of these deve-

lopments are discussed in detail in the following section, highlighting their impact

on both quantum and classical optical technologies.

1.2. Potential Application Contexts

In this Section, we provide examples of context where the work presented in this

thesis may be applicable.
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1.2.1. Quantum Metrology

Quantum metrology leverages quantum phenomena—particularly squeezing and

entanglement—to measure physical parameters with precision surpassing classical

limits [29–31]. In this field, optical interferometers are devices with innumerable me-

trological applications. In essence, any physical phenomenon that produces a change

in the propagation of light, in particular to the phase front, can be measured with

an interferometer. Form a quantum metrology perspective, interferometers can fully

exploit the nonclassical nature of light, since quantum states of optical modes can

be used as input to the device, resulting in improved precision [32,33].

The results presented in this work related to multiparameter estimation with

reduced and/or robust uncertainty, have direct implications for quantum metrology.

These applications are further detailed in Chapter 5.

1.2.2. Quantum Information Processing

Quantum information refers to the description of the state of a quantum system.

Quantum information processing involves utilizing this information for purposes such

as quantum cryptography, characterizing quantum transformations, and developing

quantum algorithms that enhance computational efficiency [34]. Photonic quantum

computing has beed considered for more than twenty years as a viable candidate

for a fault-tolerant quantum computer [35]. Currently, one of the largest quantum

computing companies, PsiQuantum, is pursuing this route.

In particular, the capability to perform a quantum fourier transform (QFT) is

highly valuable. The QFT is known for its ability to accelerate certain computations

https://www.psiquantum.com/
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compared to other unitary transformations [36,37].

Relevant results for this field, including squeezed state propagation and the im-

plementation of the QFT, are presented in Chapters 4 and 6.

1.2.3. Quantum Communication and Cryptography

Quantum communication involves the transfer of quantum information over a

distance, with a focus on ensuring secure, robust, and efficient communication. This

field encompasses technologies like quantum key distribution (QKD), which uses

principles of quantum mechanics to enable unbreakable encryption.

The multi-core fibers studied as part of this thesis are an example of space di-

vision multiplexing technology, which is a candidate to resolve the capacity crunch

in current classical telecommunications [2]. The MCF interferometers could play an

important role in fast switching and routing in both classical and quantum networks.

The results in this thesis involving precise interferometric measurements and

polarization manipulation, hold promise for applications in quantum communication

and cryptography, as discussed in Chapters 5 and 6.



Chapter 2

Theoretical Framework

This chapter presents the fundamental mathematical concepts underlying this

work. We begin in Section 2.1 by reviewing the classical electromagnetic description

of light propagation. Subsequently, in Section 2.2, we transition to a quantum mecha-

nical perspective, necessitated by the quantization of light, and examine the most

relevant states of light for our investigation. Section 3.1 examines the 2×2 Mach-

Zehnder interferometer and its significance in measuring phase shifts in propagating

light. Section 3.2.1 introduces multi-port beam splitters, which serve as building

blocks for the multi-port MZI. In Section 3.3, we propose a method for controlling

polarization in a MCF using an in-line polarization controller. Finally, Section 1.2

explores potential applications of our research.

2.1. Classical Light

Light, classically described, is an electromagnetic wave, governed by Maxwell’s

equations (in SI units):

8
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∇⃗ · E⃗ =
ρ

ε0
, ∇⃗ · B⃗ = 0 ,

∇⃗×E⃗ = −∂B⃗
∂t

, ∇⃗×B⃗ = µ0

(
J⃗ + ε0

∂E⃗

∂t

)
.

(2.1)

In the absence of charges (vacuum), ρ = 0 and J⃗ = 0. We can express E⃗ and B⃗ in

terms of a vector potential A⃗:

B⃗ = ∇⃗×A⃗ ,

E⃗ = −∂A⃗
∂t

.
(2.2)

Eq. (2.2) holds considering the Coulomb Gauge (∇⃗ · A⃗ = 0), which ensures that

A⃗ is a transverse field with only two components. Since we are considering free light

propagation with no relativistic effects, this gauge choice suffices our need for degrees

of freedom. It is worth noting that choosing the Coulomb gauge over, e.g. the Lorenz

gauge, is not strictly necessary as the results in eqs. (2.10) would remain unchan-

ged [38]. However, the standard procedure in the community is using the Coulomb

gauge. For further discussion one may like to read quantum field theory or quantum

electrodynamics texts.

Substituting Eqs. (2.2) into Ampere’s law from Eq. (2.1), we obtain

∇2A⃗ =
1

c2
∂2A⃗

∂t2
, (2.3)

which is a wave equation for the vector potential. Expanding A⃗ in its normal modes

of vibration in, say, a volume V = L3, results in

A⃗(r⃗, t) =
∑
k

2∑
α=1

(
Ckak,α(t)u⃗k,α(r⃗) + c.c.

)
, (2.4)



10

where ak,α is a time dependent amplitude, u⃗k,α is the position dependent polarization

vector, and Ck =
√

ℏ
2ε0ωk

are normalization constants. Here, the wave number k

represents the normal mode, and α the polarization component of the k-th mode.

Replacing Eq. (2.4) into Eq. (2.3) and equating terms we get

ak,α∇2u⃗k,α =
1

c2
∂2ak,α
∂t2

u⃗k,α . (2.5)

We now write the vectorial part as u⃗k,α(r⃗) = uk,α(r⃗)ε̂k,α such that by separation

of variables Eq. (2.5) becomes

∇2uk,α
uk,α

=
1

c2ak,α

∂2ak,α
∂t2

= −k2 , (2.6)

with −k2 being the separation constant for each normal mode. From Eq. (2.6) we

arrive to

∇2uk,α + k2uk,α = 0 ,

∂2ak,α
∂t2

+ ω2
kak,α = 0 ,

(2.7)

where ωk = ck. From Eqs. (2.7) we note that both ak,α and uk,α are sinusoidal or

exponential, so we are expanding A⃗ as a superposition of harmonic oscillators. For

periodic boundary conditions one have the solutions

u⃗k,α(r⃗) =
eik⃗·r⃗√
V
ε⃗k,α ,

ak,α(t) = ak,αe
−iωkt ,

(2.8)

with real ε⃗k,α and complex ak,α. Replacing Eq. (2.8) in Eq. (2.4) we obtain the vector

potential:

A⃗ =
∑
k

2∑
α=1

√
ℏ

2ε0ωkV

(
ak,αe

i(k⃗·r⃗−ωkt) + c.c.
)
ε̂k,α . (2.9)
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Here, k⃗ = 2π
L
(nx, ny, nz) and εk,α are the wave and polarization vectors respectively,

and nℓ are integers. Since we are using the Coulomb Gauge, these vectors satisfy

k⃗ · ε̂k,α = 0. Also, the polarization vector can be orthonormal by construction, such

that ε̂k,α · ε̂k,α′ = δαα′ . Using Eq. (2.9) in Eqs. (2.2) we find the electric and magnetic

fields,

E⃗(r⃗, t) = i
∑
k

2∑
α=1

Ek
(
ak,αe

i(k⃗·r⃗−ωkt) − c.c.
)
ε̂k,α

B⃗(r⃗, t) = i
∑
k

2∑
α=1

Ek
ωk,α

(
ak,αe

i(k⃗·r⃗−ωkt) − c.c.
)
k⃗×ε̂k,α ,

(2.10)

where Ek =
√

ℏωk

2ε0V
is the electric field amplitude due to one photon in the mode k,

as we will see in the following section. Now that we found E⃗ and B⃗, we can develop

the Hamiltonian, obtaining

H =
ε0
2

∫
V

(
|E⃗|2 + c2|B⃗|2

)
d3r

=
1

2

∑
k

2∑
α=1

ℏωk(ak,αa∗k,α + a∗k,αak,α) . (2.11)

If we make the change

ak,α =
1√
2ℏωk

(ωkqk,α + ipk,α) ,

a∗k,α =
1√
2ℏωk

(ωkqk,α − ipk,α) ,
(2.12)

then Eq. (2.11) becomes

H =
1

2

∑
k

2∑
α=1

(
p2k,α + ω2

kq
2
k,α

)
, (2.13)

which is the typical Hamiltonian for a harmonic oscillator in classical mechanics,

with qk,α and pk,α representing the positions and momenta, respectively. This result
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indicates that the total energy is given by the direct sum of all the parts in the

system, and if the system is empty, it equals zero, as expected.

2.2. Nonclassical Light

In this section, we review the main consequences of quantizing the electromag-

netic field (EMF), including the emergence of new states of light, the differences

between these states and classical light, and the distinctions among the states them-

selves. Special emphasis is placed on the expectation values and uncertainties of their

quadratures. These expectations and uncertainties are the foundation for Chapter 5.

2.2.1. Quantization of the Electromagnetic Field

To quantize the EMF, we promote the positions and momenta from coordinates

to operators, such that

[q̂k,α, p̂k′,α′ ] = δk,k′δα,α′iℏÎ , (2.14)

indicating that for a given mode and polarization, these operators no longer commute,

differing by a very small quantity (ℏ = 1.05×10−34 Js). This change also promotes

the complex amplitudes of the potential vector to operators, as seen in Eq. (2.12).

Thus, now we have

âk,α =
1√
2ℏωk

(ωkq̂k,α + ip̂k,α) ,

â†k,α =
1√
2ℏωk

(ωkq̂k,α − ip̂k,α) .
(2.15)

Here, âk,α and â
†
k,α are called the annihilation and creation operators respectively (or

ladder operators), for reasons that will become clear in section 2.2.4. By combining

Eq. (2.14) and Eq. (2.15), we arrive at
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[âk,α, â
†
k′,α′ ] = δk,k′δα,α′ Î ,

[âk,α, âk′,α′ ] = 0 .
(2.16)

After promoting the variables to operators, the electric field in Eq. (2.10) becomes

the operator

Ê = i
∑
k

2∑
α=1

Ek
(
âk,αe

iφ − â†k,α e
−iφ
)
, (2.17)

where φ = k⃗·r⃗−ωkt is the phase due to propagation. Likewise, using the commutation

rules in Eq. (2.16), we can rewrite the classical Hamiltonian in Eq. (2.11) in its

operator form as

Ĥ =
∑
k

2∑
α=1

ℏωk
(
â†k,α âk,α +

1

2
Î

)
. (2.18)

In essence, this is similar to Eq. (2.11), as it still is the direct sum of every mode

in the system. However, there is a fundamental difference: the vacuum energy. The

Hamiltonian in Eq. (2.18) adds a base energy for every term (even for the vacuum),

causing the energy to diverge when considering infinite modes. To address this, we

interpret this term as a zero-energy displacement with no physical consequences. For

a deeper treatment, we recommend consulting quantum field theory texts, as this

falls outside the scope of this thesis.

2.2.2. Polarization of Quantum Light

Polarization refers to the spatial components of the propagated field, similar to

how normal modes refer to the frequency components. It is a relevant concept since

light with independent polarizations does not interfere. In a classical description,
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polarizations are the directions in which the field oscillates. Generally, these direc-

tions can be arbitrary, but for transverse propagation, the polarizations are restricted

to the transverse plane perpendicular to the propagation direction. Since the pola-

rizations exist in a 2-D space, there can be up to two independent (orthonormal)

polarizations at a time, forming a basis for the polarizations.

In a quantum framework, we describe light as being in a specific polarization

state, although the concept of polarization remains the same. The principal polari-

zation bases are illustrated Fig. 2.1.

Fig. 2.1: Representation of the principal polarization bases. The arrows represent the
directions of intensity oscillations at the wave front. a) Standard basis. b) Hadamard Basis.
c) Fourier Basis.

The polarizations states in Fig. 2.1 are related by the following relations:

|D+⟩ = |H⟩+ |V ⟩√
2

,

|D−⟩ = |H⟩ − |V ⟩√
2

,

|R⟩ = |H⟩+ i|V ⟩√
2

,

|L⟩ = |H⟩ − i|V ⟩√
2

.

(2.19)

As seen from Fig. 2.1, polarizations can be classified as linear or circular, depen-

ding on their distribution in the transverse plane. Circular polarizations do not have

a well-defined linear polarization associated with them. This can be understood by
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noting that |R⟩ and |L⟩ are obtained when |V ⟩ is phase-shifted by ±π
2
relative to |H⟩.

This phase shift can result from various effects (e.g., different propagation velocities

for each polarization), causing the light to lack a predominant linear polarization.

Other phase shifts lead to elliptical polarizations. In our experiment (Chapter 6),

the required basis polarizations are generated using a quarter’wave plate to induce

these phase shifts.

When working with polarization, the Stokes or Bloch parameters are useful tools

for visualizing and characterizing polarization1. Both of these parameters represent

the intensity of light in the bases defined in Fig. 2.1. Stokes parameters are used

in a classical context, for partially and fully polarized light, while Bloch parameters

are used in a quantum context, for pure and mixed states. Here, we will use the lat-

ter. Bloch parameters a1, a2, and a3 are mapped onto the Bloch sphere in Fig. 2.2.

Points on the sphere’s surface represent pure states, while points inside the sphere

correspond to mixed states.

1In fact, they are a useful representation for any qubit state, including polarization.
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Fig. 2.2: Bloch sphere representation of an arbitrary state |ψ⟩. Each axis correspond to a
Bloch parameter, wich are associated to a certain basis.

For the analytic expressions of Bloch parameters, we can note that the basis

states in Fig. 2.1 are eigenstates of the Pauli matrices. Consequently, for any state,

its density matrix can be expressed using the Bloch parameters ai as

ρ =
1

2

(
Î + a1σz + a2σx + a3σy

)
=

1

2

(
Î + a⃗ · σ⃗

)
, (2.20)

where σi are the Pauli matrices and a⃗ = (a1, a2, a2) is the Bloch vector. Solving for

ai, we find

a1 = ⟨H|ρ|H⟩ − ⟨V |ρ|V ⟩ = ρ11 − ρ22 ,

a2 = ⟨+|ρ|+⟩ − ⟨−|ρ|−⟩ = 2ℜ(ρ12) , (2.21)

a3 = ⟨R|ρ|R⟩ − ⟨L|ρ|L⟩ = 2ℑ(ρ21) .

For a pure state, we can write

|ψ⟩ = ph|H⟩+ pv|V ⟩ , (2.22)

and the Bloch parameters become

a1 = |ph|2 − |pv|2 ,

a2 = 2ℜ (php
∗
v) , (2.23)

a3 = 2ℑ (p∗hpv) .
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If the state is normalized, we can define phases θ, φh, and φv such that ph =

cos
(
θ
2

)
eiφh and pv = sin

(
θ
2

)
eiφv . Then, the Bloch parameters become
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a1 = cos θ ,

a2 = sin θ cos∆vh , (2.24)

a3 = sin θ sin∆vh ,

where ∆vh = φv − φh. The expressions in Eq. (2.24) resemble spherical coordinates,

where θ and ∆vh are the polar and azimuthal angles, respectively, although here the

north pole corresponds to a1 = 1.

2.2.3. Quadratures and uncertainty

A useful concept for the study of quantum light are the quadratures. We often

make diagrams in the phase space (e.g., the Wigner function), using the position

and momentum. Here we define the quadratures, which are analogous but differ only

in units, with the quadratures being dimensionless. The quadrature operators for a

single mode and polarization field (for simplicity of notation) are defined as

X̂1 =

√
ω

2ℏ
q̂ =

â+ â†

2
,

X̂2 =
1√
2ℏω

p̂ =
â− â†

2i
,

(2.25)

and they represent the real and imaginary part of the complex amplitude defined by

â, as we can see from their expression. We can actually define a general quadrature

as

X̂(ν) =
âe−iν + â† eiν

2
, (2.26)

which can be interpreted as a continuous rotation in phase space. This recovers X̂1

and X̂2 for ν = 0, π
2
, respectively, making it clearer that X̂1 and X̂2 are, in fact, in
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quadrature. The commutation relation between two quadratures shifted by π
2
is

[
X̂(ν), X̂

(
ν +

π

2

)]
=
i

2
. (2.27)

Another useful expression comes from developing the electric field operator using

these quadratures. In order to do this, we first promote the complex amplitudes in

Eq. (2.10) to operators and then substitute Eq. (2.25) into it. For simplicity, we do

this for a single-mode field, arriving at

Ê = −2E0
(
X̂1 sinφ+ X̂2 cosφ

)
. (2.28)

From Eq. (2.28), it is even more explicit that the quadratures are associated with

the amplitudes in quadrature.

Lastly, to represent a quantum state in the quadrature space, we can make a

phase space diagram defined by the quadratures. In such diagrams, each point in the

space corresponds to the expectation values of the quadratures, but we also depict

an error area, corresponding to the fluctuations in each quadrature. If we consider a

state |ψ⟩, we need to compute ⟨ψ|X̂(ν)|ψ⟩, and its fluctuations:

∆
〈
X̂(ν)

〉
=

√
⟨ψ|X̂2(ν)|ψ⟩ − ⟨ψ|X̂(ν)|ψ⟩2 , (2.29)

evaluating ν to consider any pair of quadratures we may want to work with.2 The

squared quadrature is

X̂2(ν) =
1

4

(
1 + 2â† â+ â2e−2iν + â† 2e2iν

)
, (2.30)

2Of course, this is the procedure for any operator, not just the quadratures.
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which for ν = 0, π
2
reduces to

X̂2
1 =

1

4

(
1 + 2â† â+ â2 + â† 2

)
,

X̂2
2 =

1

4

(
1 + 2â† â− â2 − â† 2

)
.

(2.31)

Once we have computed the expectations, the state’s quadrature space diagram

representation will look something like Fig. 2.3.

Fig. 2.3: Arbitrary representation of a state in the phase space. The circular shape is for
the example (this looks like a coherent state), but depends on the state.

Lastly, for this section, let us recall Heisenberg’s minimum uncertainty principle,

which, for the quadratures, reads

∆
〈
X̂(ν)

〉
∆
〈
X̂
(
ν +

π

2

)〉
≥ 1

4
. (2.32)

Effectively, this principle establishes a minimum error area that one state can occupy

inthe quadrature space. If a state reaches the equality in Eq. (2.32), we say it is a

minimum uncertainty state.
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Developing Heisenberg’s uncertainty principle with classical and quantum states

leads respectively to the standard quantum limit (SQL) and the Heisenberg limit.

These limits describe how the minimum uncertainty achievable in a measurement

scales with the number of photons (or the energy in the system). The scalings are:

∆SQL ∼ 1√
N
,

∆H ∼ 1

N
,

where N is the photon number in the system. The SQL represents the minimum

uncertainty achievable using only classical states, whereas the Heisenberg limit ap-

plies any kind of state, and it is considered unbreakable. In quantum metrology, the

objective is to approach the Heisenberg limit as closely as possible.

2.2.4. Fock States

As a consequence of the quantization of the electromagnetic field, we encounter

new quantum states of light, such as the Fock states. These describe the energy

quantization. As will be discussed, Fock states do not resemble classical light nor

have a classical counterpart, yet they are the simplest quantum light states and are

useful for several reasons.

We have already seen that the Hamiltonian of the system is an independent

sum over every mode. For simplicity, we now consider a single-mode field, such that

every photon has a frequency ω. The Hamiltonian then becomes

Ĥ = ℏω
(
â† â+

1

2
Î

)
. (2.33)

Here, the operator â† â is called the number operator, also denoted as n̂. Fock states
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are also known as “number states”, because they are defined as eigenstates of the

number operator, with the eigenvalue representing the precise photon number in the

state, as will be shown. For now, let us note that this also means that Fock states

are eigenstates of the Hamiltonian. Denoting a Fock state as |n⟩, we have

Ĥ|n⟩ = En|n⟩ , (2.34)

where En is the eigenenergy associated with |n⟩. If we evaluate the commutator of

the ladder operators with the Hamiltonian using Eqs. (2.16) and (2.18), we obtain

[
Ĥ, â

]
= −ℏωâ ,[

Ĥ, â†
]
= ℏωâ† ,

(2.35)

and using these results, one can show that

Ĥ (â|n⟩) = (En − ℏω) (â|n⟩) ,

Ĥ
(
â† |n⟩

)
= (En + ℏω)

(
â† |n⟩

)
.

(2.36)

As clearly shown by Eq. (2.36), the annihilation and creation operators lower and

raise the energy of the state |n⟩ by the energy of one photon, ℏω, respectively, which

is why they are called as such: they remove or add a photon to the system. Since

we are basically dealing with a harmonic oscillator, we can not have negative energy

values, so there must be a state with minimum energy. Note that this also means

that this state lives in the kernel of â. Let us denote this ground state as |0⟩, then

we have

Ĥ|0⟩ = 1

2
ℏω|0⟩ , (2.37)

thus, the lowest energy we can have is E0 =
1
2
ℏω. The other energies are then given

by
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En = ℏω
(
n+

1

2

)
, (2.38)

where n ∈ N0. Substituting Eq. (2.38) in (2.34) leads to the fact mentioned earlier:

n̂|n⟩ = â† â|n⟩ = n|n⟩ , (2.39)

where n is the photon number, making their alternative name (number states) clearer.

As for the normalization of Fock states, we note from Eq. (2.36) that

â|n⟩ = cn|n− 1⟩ , (2.40)

with cn a constant. Using Eqs. (2.39) and (2.40), we can find this constant:

n = ⟨n|â† â|n⟩

= (â|n⟩)† â|n⟩

= ⟨n− 1|c∗ncn|n− 1⟩

= |cn|2 ,

since we want normalized Fock states. We can take cn =
√
n, and with an analogous

procedure for the creation operator, we end up with

â|n⟩ =
√
n|n− 1⟩ ,

â† |n⟩ =
√
n+ 1|n+ 1⟩ .

(2.41)

It is now clear that we can generate any Fock state from the ground state using

the creation operator as
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|n⟩ =
(
â†
)n

√
n!

|0⟩ . (2.42)

Aside from the normalization, since the Hamiltonian is a Hermitian operator,

Fock states are orthogonal for different n values, although one can demonstrate this

from Eq. (2.42) and recursively use the commutation rules in Eq. (2.16). We have

shown that Fock states are orthonormal, and therefore, form a complete basis of the

Hilbert space, expressed by the closure relation:

∞∑
n=0

|n⟩⟨n| = Î . (2.43)

To comprehend the behavior of these states, we first take the expectation value

of the quadratures in Eq. (2.25), which clearly gives

⟨n|X̂1|n⟩ = ⟨n|X̂2|n⟩ = 0 . (2.44)

This means that Fock states are always centered at the origin of the phase spa-

ce defined by the quadratures, which does not resemble classical behavior, as this

would imply sinusoidal oscillations of some kind. Besides these expectations, we can

develop the expectation of the (single mode) electric field operator in Eq. (2.28) by

substituting Eqs. (2.25) into it, obtaining

⟨n|Ê|n⟩ = 0 , (2.45)

once again, showing that Fock states does not resemble classical light. As for the

uncertainty in the quadratures, we take the expectation value of Eq. (2.31),

⟨n|X̂2
1 |n⟩ = ⟨n|X̂2

2 |n⟩ =
1

4
(1 + 2n) ,
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and finally

∆⟨X̂1⟩ = ∆⟨X̂2⟩ =
1

2

√
1 + 2n . (2.46)

Here, we can note that the vacuum quadrature fluctuations are 1
2
, making it a mini-

mum uncertainty state, and that Fock states have extra noise associated with them,

in addition to the vacuum noise. Fock states are not of minimum uncertainty, sin-

ce ∆X̂1∆X̂2 >
1
4
. With these observations, we can represent a Fock state in the

quadrature space, as shown in Fig. 2.4.

Fig. 2.4: Quadrature space representation for a Fock state.

As seen in Fig. 2.4, Fock states do not have a well-defined phase in this space, as

they exhibit angular symmetry. This characteristic will be discussed in Section 2.2.5.

Next, let us assess the fluctuations of the electric field. Using Eq. (2.17), we

compute

⟨n|Ê2|n⟩ = E2
0 ⟨n|1 + 2â† â− â2e2iφ − â† 2e−2iφ|n⟩ = E2

0 (1 + 2n) .
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From this result, along with Eq. (2.45), we obtain the fluctuations:

∆⟨Ê⟩ = E0
√
1 + 2n . (2.47)

This once again shows that Fock states experience increased noise as the photon

number increases. Additionally, the fluctuations for the vacuum state are simply E0,

representing the field amplitude due to a single photon.

Lastly, let us calculate the fluctuations in the photon number. This is given by:

∆⟨n̂⟩ =
√
⟨n|â† â† ââ+ â† â|n⟩ − ⟨n|â† â|n⟩2

= n(n− 1) + n− n2

= 0 ,

(2.48)

implying that Fock states have a well defined photon number.

2.2.5. Quantum Phase

As we know, classical light possesses a well-defined phase during its propagation,

and it is natural to desire a similar property for quantum light. Dirac proposed the

first method to address this by factorizing the ladder operators as [39]:

â = eiϕ̂
√
n̂ ,

â† =
√
n̂e−iϕ̂ ,

(2.49)

where ϕ̂ was intended to be a Hermitian operator capable of retrieving the phase

of the state. However, this approach had a significant flaw: if ϕ̂ is Hermitian, then

eiϕ̂ should be unitary. Yet, this was not the case [22]. One proposed solution was

to include non-physical Fock states for negative photon numbers, thus removing the

lower bound of the n̂ spectrum.
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Later, Susskind and Glogower proposed [40] an alternative approach, introdu-

cing the Susskind-Glogower (SG) operators defined as:

ê =
(
ââ†
)− 1

2 â ,

ê† = â†
(
ââ†
)− 1

2 .

(2.50)

These operators, also referred to as exponential operators, serve as quantum analogs

of exp(±iϕ), as we will show. When applied to Fock states, the exponential operators

perform transformations analogous to the e±iϕ̂ operators defined by Dirac:

ê|n⟩ = |n− 1⟩ ,

ê†|n⟩ = |n+ 1⟩ .
(2.51)

These are similar to the ladder operators, but without the multiplicative constants.

Another useful representation of these operators is:

ê =
∞∑
n=0

|n⟩⟨n+ 1| ,

ê† =
∞∑
n=0

|n+ 1⟩⟨n| .
(2.52)

Using this form, we find that êê† = Î, but ê†ê = Î − |0⟩⟨0|. Therefore, the SG

operators are almost unitary, spoiled by a vacuum contribution. This limitation is

relatively acceptable because, for states with sufficiently large photon numbers, the

vacuum contribution becomes negligible, and ê can be considered approximately uni-

tary.

Now that we have a promising candidate to study the quantum phase, let us

proceed to further analyze its properties. Since the SG operators are intended to
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serve as analogs of e±iϕ, we next consider the eigenvalue problem:

ê|ϕ⟩ = eiϕ|ϕ⟩ , (2.53)

where the phase eigenstate is given in the Fock basis by

|ϕ⟩ =
∞∑
n=0

einϕ|n⟩ . (2.54)

These eigenstates are neither normalizable nor orthogonal, as their inner product

is given by:

⟨ϕ′|ϕ⟩ =
∞∑
n=0

ein(ϕ−ϕ
′) ̸= δ(ϕ− ϕ′) . (2.55)

If the spectrum of n̂ were unbounded from below, the equality would hold, allo-

wing for the orthonormalization of the phase eigenstates. Nevertheless, we achieve a

form of normalization by noting that

1

2π

∫ 2π

0

|ϕ⟩⟨ϕ|dϕ = 1 . (2.56)

This normalization introduces the perspective of associating a phase distribution

with quantum states. For a normalized state |ψ⟩, expressed as:

|ψ⟩ =
∞∑
n=0

Cn|n⟩ , (2.57)

we can define the phase distribution associated with |ψ⟩ using Eq. (2.54) as:

P(ϕ) ≡ 1

2π
|⟨ϕ|ψ⟩|2

=
1

2π

∣∣∣∣∣
∞∑
n=0

e−inϕCn

∣∣∣∣∣
2

,

(2.58)
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which is always positive and normalized when integrated, as shown in Eq. (2.56).

This allows us to compute the average of any function f(ϕ) according to:

⟨f(ϕ)⟩ =
∫ 2π

0

f(ϕ)P(ϕ)dϕ . (2.59)

The average ⟨ϕ⟩ is the closest analog to a quantum phase. For example, consider

a Fock state |n⟩. From Eq. (2.58), its phase distribution is P(ϕ) =
1

2π
, indicating

that all values of ϕ are equally probable. Combined with the fact that ∆⟨n̂⟩ = 0,

this confirms that Fock states appear as circles in the phase space (see Fig. 2.4).

2.2.6. Coherent States

As discussed in section 2.2.4, Fock states are not well-suited as quantum analogs

to describe classical light. This is because they lack a fixed phase, and the expec-

tation value of the electric field operator is zero, rather than sinusoidal. However,

there exists a quantum state of light that closely resembles the behavior of clas-

sical light in many aspects: the coherent states. These states are considered the

most classical among quantum states, although they still exhibit inherently quantum

behavior [41,42].

Mathematically, coherent states are defined as eigenstates of the annihilation

operator:

â|α⟩ = α|α⟩ , (2.60)

where |α⟩ is the coherent state corresponding to the complex eigenvalue α. The

complex parameter α naturally encodes both the amplitude and phase of the coherent
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state, which correspond directly to the amplitude and phase of α itself. This can be

demonstrated by evaluating the expectation value of the quadratures in Eq. (2.25)

for a coherent state as:

⟨α|X̂1|α⟩ =
1

2
⟨α|â† + â|α⟩ ,

⟨α|X̂2|α⟩ =
1

2i
⟨α|â− â† |α⟩ .

(2.61)

To calculate these expectation values, we use the Hermitian conjugate of Eq.

(2.60):

⟨α|â† = α∗⟨α| . (2.62)

Substituting Eqs. (2.60) and (2.62) into Eq. (2.61), we obtain:

⟨α|X̂1|α⟩ =
α∗ + α

2
= ℜ(α) ,

⟨α|X̂2|α⟩ =
α− α∗

2i
= ℑ(α) .

(2.63)

Here, we assume that coherent states are normalized. The results in Eqs. (2.63)

demonstrate that, in the phase space defined by these quadratures, the coherent

state’s amplitude and phase correspond directly to those of α. Writing α = |α|eiθ,

we can compute the expectation value of the electric field operator from Eq. (2.17),

resulting in (for a single mode field):

⟨α|Ê|α⟩ = iE0
(
⟨α|â|α⟩eiφ − ⟨α|â† |α⟩e−iφ

)
= iE0

(
αeiφ − α∗e−iφ

)
= −2|α|E0 sin (φ+ θ) , (2.64)
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which resembles a classical field. Therefore, we have a quantum state with a well-

defined amplitude and phase (in the phase space defined by the quadratures), and

the expectation value of the electric field for these states behaves like in classical

mechanics. This makes coherent states a “quasi-classical” estate of light. What are

the quantum features of coherent states then? Naturally, uncertainty.

Let us calculate the fluctuations in the quadrature space. By taking the expec-

tation value of Eq. (2.31) in a coherent state and using Eqs. (2.60) and (2.62), we

find

⟨α|X̂2
1 |α⟩ =

1

4
+ |α|2 cos2 θ ,

⟨α|X̂2
2 |α⟩ =

1

4
+ |α|2 sin2 θ .

Using Eqs. (2.63), it becomes clear that

∆⟨X̂1⟩ = ∆⟨X̂2⟩ =
1

2
. (2.65)

This means that the noise in both quadratures is 1
2
for any coherent state, which is

the same as the vacuum state. Coherent states are minimum uncertainty states, as

they saturate the uncertainty principle, and they exhibit equal uncertainties in both

quadratures. These properties provide an alternative way to define coherent states,

as they describe how these states are represented in phase space: a circle centered in

α with diameter 1
2
, as illustrated in Fig. 2.5.
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Fig. 2.5: Quadrature space representation of the coherent state |α⟩.

For the uncertainty in the field operator, we need the expectation value of Ê2.

Starting from Eq. (2.17), we proceed as follows:

⟨α|Ê2|α⟩ = E2
0

〈
α
∣∣1 + 2â† â− â2e2iφ − â† 2e−2iφ

∣∣α〉
= E2

0

(
1 + 2|α|2 − α2e2iφ − α∗2e−2iφ

)
= E2

0

(
1 + 2|α|2

(
1− cos (2(φ+ θ))

))
= E2

0

(
1 + 4|α|2 sin2(φ+ θ)

)
. (2.66)

Now, with Eqs. (2.64) and (2.66), it is clear that the fluctuations of the electric field

are

∆⟨Ê⟩ = E0 , (2.67)

which are the vacuum fluctuations as well. Although these fluctuations are due to the

quantum nature of coherent states, the fact that they are those of the vacuum makes
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these states nearly classical. This is because the vacuum noise is always present; they

have no additional noise associated with the coherent state itself, unlike Fock states.

At this point, we have showed that coherent states are a viable way to repre-

sent classical light in quantum mechanics.

Now, we study the photon distribution in coherent states. For this, we first obtain

the expected photon number with the number operator. We get

⟨n̂⟩ = ⟨α|n̂|α⟩ = |α|2 . (2.68)

Not a surprise, since |α| is the amplitude of the field, the intensity must be |α|2. For

the fluctuations in the mean photon number, it is easy to show that

∆⟨n̂⟩ =
√
⟨α|â† â† ââ+ â† â|α⟩ − ⟨α|â† â|α⟩2 = |α| =

√
⟨n̂⟩ . (2.69)

This result is what we expect for a Poissonian distribution. We notice that the relative

uncertainty in the mean photon number holds

∆⟨n̂⟩
⟨n̂⟩

=
1√
⟨n̂⟩

, (2.70)

which becomes smaller as the mean photon number increases. This means that with

a large enough number of photons, coherent states behave like a classical state.

To see the origin of the Poissonian behaviour of coherent states, let us recall

that Fock states form a basis for the Hilbert space, so we can write a coherent (or

any) state as
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|α⟩ =
∞∑
n=0

Cn|n⟩ , (2.71)

with Cn complex. Acting with â,

â|α⟩ =
∞∑
n=0

Cnâ|n⟩

=
∞∑
n=1

Cn
√
n|n− 1⟩ , (2.72)

α|α⟩ =
∑
n=0

αCn|n⟩ . (2.73)

Equating the terms of |n⟩ in Eqs. (2.72) and (2.73) we arrive at

Cn =
α√
n
Cn−1 ,

which means

Cn =
αn√
n!
C0 ,

so

|α⟩ = C0

∞∑
n=0

αn√
n!
|n⟩ . (2.74)

For C0, we evaluate the normalization condition,

⟨α|α⟩ = |C0|2
∞∑
n′=0

∞∑
n=0

α∗n′
αn√

n′!n!
⟨n′|n⟩

= |C0|2
∞∑
n=0

|α|2n

n!



35

= |C0|2e|α|
2

.

Thus, C0 = exp
(
−1

2
|α|2
)
satisfies the normalization condition, resulting in coherent

states being represented as

|α⟩ = exp

(
−1

2
|α|2
) ∞∑

n=0

αn√
n!
|n⟩ . (2.75)

Now, using Eq. (2.69), the probability of detecting n photons is

Pn = |Cn|2 = exp
(
−|α|2

) |α|2n
n!

= e−⟨n̂⟩ ⟨n̂⟩n

n!
, (2.76)

which is exactly a Poisson distribution with mean ⟨n̂⟩. Now, for the phase distribution

of coherent sates, we use Eqs. (2.58) and (2.75) to get

P(ϕ) =
1

2π
e−|α|2

∣∣∣∣∣
∞∑
n=0

ein(θ−ϕ)
|α|n√
n!

∣∣∣∣∣
2

,

where α = |α|eiθ. For large enough |α|2, a Poissonian distribution approximates to a

Gaussian, so in this case we may write

P(ϕ) ≈
√

2|α|2

π
exp

(
−2|α|2 (ϕ− θ)2

)
. (2.77)

This is a Gaussian centered at ϕ = θ. It is also worth noting that for increasing pho-

ton number the Gaussian becomes narrower, resembling better classical light due to

its now well-defined phase.

Finally, for coherent states, let us think again about their phase space repre-

sentation (see Fig. 2.5). When changing the complex parameter α, we are effectively

displacing the circle over the phase space. This gives us the hint of considering cohe-
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rent states as displaced vacuum states, and so we define the displacement operator

D̂(α) according to

D̂(α)|0⟩ = |α⟩ . (2.78)

To express this operator, we substitute Eq. (2.42) in Eq. (2.75) to get

|α⟩ = exp

(
−1

2
|α|2
) ∞∑

n=0

αn

n!
â† n|0⟩

= exp

(
−1

2
|α|2
)
exp

(
αâ†

)
|0⟩ . (2.79)

Here one could claim that the displacement operator is exp
(
−1

2
|α|2
)
exp

(
αâ†

)
, but

it is not yet complete, because it is a non-unitary transformation, as one can easily

test. To solve this, we notice that

exp (−α∗â) |0⟩ =
∞∑
n=0

(−α∗â)n√
n!

|0⟩ = |0⟩ ,

so Eq. (2.79) becomes

|α⟩ = exp

(
−1

2
|α|2
)
exp

(
αâ†

)
exp (−α∗â) |0⟩ . (2.80)

To Further develop this, we note that

[
αâ† ,−α∗â

]
= |α|2 ,

so this commutator commutes with anything. Then, by the Baker-Campbell-Hausdorff

formula (BCH),

exp
(
αâ†

)
exp (−α∗â) = exp

(
αâ† − α∗â+

1

2
|α|2
)
,
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and substituting this in Eq. (2.80), we get the final expression for the displacement

operator:

D̂(α) = exp

(
−1

2
|α|2
)
exp

(
αâ†

)
exp (−α∗â) = exp

(
αâ† − α∗â

)
. (2.81)

The displacement operator in Eq. (2.81) is now unitary. Practically speaking, what

this operator does is create photons in the system one by one, as we can see from

Eq. (2.79). Utilizing the BCH formula one can easily show the relevant properties of

this operator:

1. Unitary operator: This means that D̂(α)D̂†(α) = D̂†(α)D̂(α) = Î. In fact,

we can note that D̂†(α) = D̂(−α), so inverting the action of the operator is

equivalent to displacing in the opposite direction. This property is achieved by

making the operator unitary.

2. Displaced ladder operators: When we let the ladders operators evolve with

the displacement operator, we get

D̂†(α)âD̂(α) = â+ αÎ ,

D̂†(α)â† D̂(α) = â† + α∗Î .
(2.82)

3. Non-cumulative displacement: It would be nice if D̂(α)D̂(β) = D̂(α +

β), but the truth is that these results differ by a phase factor, leading to

D̂(α)D̂(β) = exp (iℑ(αβ∗)) D̂(α+ β). This phase shift is physically irrelevant,

as it does not change the photon distribution. Still, we can note that if α and

β are either parallel or anti-parallel, there is no phase shift. This property also

leads to non-commutativity, indeed, D̂(α)D̂(β) = exp (2iℑ(αβ∗)) D̂(β)D̂(α).
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2.2.7. Squeezed States

Up to this section, we have only encountered states with symmetric quadrature

uncertainty. Squeezed states, while being minimum uncertainty states, exhibit diffe-

rent uncertainties in each quadrature. This is achieved by increasing the uncertainty

in one quadrature while decreasing it in the other, which is useful due to the enhan-

ced precision when measuring the squeezed quadrature.

To generate these states, we consider a non-linear operator analogous to the

displacement operator:

Ŝ(ξ) = exp

(
1

2

(
ξ∗â2 − ξâ† 2

))
. (2.83)

This is the squeezing operator, and unlike the displacement operator, the creation

of photons in squeezed states occurs in pairs. A squeezed state3 is denoted as

|ξ⟩ = Ŝ(ξ)|0⟩ . (2.84)

We can also interpret this by noting that the displacement operator arises from

the evolution due to a Hamiltonian of the form

Ĥ ∝ αâ† − α∗â .

With this Hamiltonian the propagator is

exp

(
i

ℏ
Ĥt

)
= D̂ (αt) .

3More precisely, this is a squeezed vacuum state.
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Therefore, we interpret squeezed states as those that arises from the evolution

due to a Hamiltonian of the form

Ĥ ∝ ξ∗â2 − ξâ† 2 .

For the squeezing operator, the main properties can also be derived using the

BCH formula. These properties are:

1. Unitary operator: Ŝ†(ξ) = Ŝ−1(ξ). For the squeezing operator, we also note

that Ŝ†(ξ) = Ŝ(−ξ). As we progress in this section, we will interpret what

squeezing in the opposite direction means.

2. Squeezed ladder operators: Evolving the ladder operators with the squee-

zing operator leads to

Ŝ†(ξ)âŜ(ξ) = â cosh(r)− â† eiθ sinh(r) = âs ,

Ŝ†(ξ)â† Ŝ(ξ) = â† cosh(r)− âe−iθ sinh(r) = â†s ,
(2.85)

where we have taken ξ = reiθ. Note that these are linear combinations of the

ladder operators.

For computing the quadrature expectation values for squeezed states, we use Eq.

(2.85). We arrive at

⟨ξ|X̂(ν)|ξ⟩ = 1

2
⟨0|Ŝ†(ξ)

(
âe−iν + â† eiν

)
Ŝ(ξ)|0⟩

=
1

2

〈
0
∣∣âse−iν + â†s e

iν
∣∣ 0〉

= 0 . (2.86)
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For any quadrature we may choose, the expectation is 0, so the state is centered at

the origin of the quadrature space.

Therefore, the expectation of the electric field is

⟨ξ|Ê|ξ⟩ = 0 . (2.87)

The uncertainties are not as straightforward as before due to the nonlinear effects.

We must compute the expectation values of quadratic combinations of the ladder

operators. To achieve this, we recall Eq. (2.85) and we develop the following:

Ŝ†(ξ)ÂB̂Ŝ(ξ) = Ŝ†(ξ)ÂŜ(ξ)Ŝ†(ξ)B̂Ŝ(ξ) = ÂsB̂s , (2.88)

where Â and B̂ are arbitrary operators, and their squeezed representations are de-

noted with an s subscript. Thus, utilizing Eq. (2.85), we arrive at

Ŝ†(ξ)â2Ŝ(ξ) = â2s = â2 cosh2 r + â† 2e2iθ sinh2 r −
(
1 + 2â† â

)
eiθ cosh r sinh r ,

Ŝ†(ξ)â† 2Ŝ(ξ) = â†s
2 = â2e−2iθ sinh2 r + â† 2 cosh2 r −

(
1 + 2â† â

)
e−iθ cosh r sinh r ,

Ŝ†(ξ)â† âŜ(ξ) = â†s âs = sinh2 r + â† â cosh(2r)−
(
â2e−iθ + â† 2eiθ

)
cosh r sinh r .

(2.89)

With this, we derive the quadrature uncertainties by substituting Eq. (2.89) into Eq.

(2.30), which gives

⟨ξ|X̂2(ν)|ξ⟩ = 1

4

〈
0
∣∣1 + 2â†s âs + â2se

−2iν + â†s
2e2iν

∣∣ 0〉
=

1

4

(
cosh(2r)− cos(θ − 2ν) sinh(2r)

)
.
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The fluctuation are therefore

∆
〈
X̂(ν)

〉
=

1

2

√
cosh(2r)− cos(θ − 2ν) sinh(2r) . (2.90)

These fluctuations have a maximum and minimum value depending on the phases

of the quadratures and complex squeezing parameter. The extremes are as follows:

∆
〈
X̂(ν)

〉
=


1

2
e−r , for ν =

θ

2
or ν =

θ

2
+ π,

1

2
er , for ν =

θ

2
± π

2
.

(2.91)

In this case, we need to adjust the quadrature phases for the squeezed state to be of

minimum uncertainty. Once this is done, we gain increased precision when measuring

one of the quadratures. In general, the uncertainty product for a pair of quadratures

is given by

∆
〈
X̂(ν)

〉
∆
〈
X̂
(
ν +

π

2

)〉
=

1

4

√
cosh2(2r)− cos2 (θ − 2ν) sinh2(2r) . (2.92)

Thus, squeezed states are minimum uncertainty states only for quadratures holding

Eq. (2.91). Given this, a vacuum squeezed state is represented in the quadrature

space as in Fig. 2.6.

Fig. 2.6: Quadrature space representation of a vacuum squeezed state given by the complex
squeezing parameter ξ = reiθ.
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For the electric field fluctuations, we first compute from Eq. (2.17):

⟨ξ|Ê2|ξ⟩ = E2
0

〈
ξ
∣∣1 + 2â† â− â2e2iφ − â† 2e−2iφ

∣∣ ξ〉
= E2

0

〈
0
∣∣1 + 2â†s âs − â2se

2iφ − â†s
2e−2iφ

∣∣ 0〉
= E2

0

(
cosh(2r) + cos(θ + 2φ) sinh(2r)

)
. (2.93)

Thus, the field fluctuations are

∆⟨Ê⟩ = E0
√
cosh(2r) + cos(θ + 2φ) sinh(2r) . (2.94)

For the electric field, the extremes are E0e±r, depending on the phases. This means

that during propagation, the field uncertainty changes, such that at certain instan-

ces, one can measure the field with increased precision.

Lastly, let us assess the photon statistics of squeezed states. From Eq. (2.89),

we can clearly see that the photon number is now

⟨ξ|n̂|ξ⟩ = sinh2 r ̸= 0 . (2.95)

Squeezed vacuum states are not truly empty from this perspective; nevertheless, they

are still considered vacuum states because the field amplitude is zero, as it would be

for the ordinary vacuum.

2.2.8. Displaced Squeezed States

We can combine the ideas of coherent and squeezed states to create displaced

squeezed states, which are essentially the same as squeezed coherent states or bright
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squeezed light. They are states with a non-zero field amplitude and squeezed quadra-

ture uncertainties, and are generated by composing the displacement and squeezing

operators. They are denoted as

|α, ξ⟩ = D̂(α)Ŝ(ξ)|0⟩ , (2.96)

where we first squeeze the vacuum and then displace it. Since these two operators

do not commute, displacing the vacuum and then squeezing it will not give the

same state using the same parameters. However, conceptually, the resulting states

will be similar: non-zero field amplitude and squeezed uncertainties. For these two

approaches to coincide, a parameter γ = α cosh r+ α∗eiθ sinh r must hold, such that

D̂(α)Ŝ(ξ) = Ŝ(ξ)D̂(γ) ,

where ξ = reiθ. Without going into the detailed expectation values, a general displa-

ced squeezed states can be represented in the quadrature space as in Fig. 2.7.

Fig. 2.7: Representation in the quadrature space of an arbitrary displaced squeezed state
with squeezing parameter r and assuming an optimal ν.



44

From Fig. 2.7 it is clear that displaced squeezed states are simply displacements

of a vacuum squeezed state. Moreover, the uncertainties are similar to those of the

squeezed vacuum state (Fig. 2.6), which is due to the coherent state not having

additional uncertainty.

2.2.9. Two-Mode Squeezed States

Another kind of squeezed state are the two-mode squeezed states. They ari-

se naturally when single-mode squeezed vacuum states propagate through, e.g., a

coupled waveguide array [25,43].

Mathematically, the non linearity of squeezed states allows for the appearan-

ce of the crossed terms âiâj and â†i â
†
j in the squeezed operator’s argument after

propagating and therefore mixing the annihilation operators. The pure two-mode

squeezing operator acting on the i-th and j-th modes is given by

Ŝij(ξ) = exp

(
1

2

(
ξâ†i â

†
j − ξ∗âiâj

))
. (2.97)

These states exhibit squeezed uncertainty in a linear combination of the quadratures

of the two modes.

As these states arise alongside single-mode squeezed states, we aim to better

understand the dynamics governing single- and two-mode squeezing. An initial ex-

ploration of this topic can be found in Chapter 4.



Chapter 3

Optical Devices and Techniques

3.1. Standard Two-Port Interferometry

In this section, we explore the interferometry of quantum light, focusing on the

standard case of two-port interferometry. In Section 3.1.1, we review the physical

and mathematical descriptions relevant to this thesis for 2-input, 2-output beam

splitters. Then, in Section 3.1.2, we construct a 2-input, 2-output Mach-Zehnder

interferometer using the previously defined beam splitters, demonstrating its use as

an optical sensor and showing how the precision of measurements can be improved

beyond the standard quantum limit (SQL) using quantum resources.

3.1.1. Two-Port Beam Splitter

A beam splitter (BS) is an optical device that splits a light beam into two or

more beams. A simple way to achieve this is by simultaneously transmitting and

reflecting light. Consider the situation depicted in Fig. 3.1.

45
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Fig. 3.1: 2 input, 2 output BS (BS2). âi (b̂i) are the annihilation operators for the i-th
path at the input (output).

In Fig. 3.1, we write the annihilation operator where we would typically write

the intensity in a classical context, in consideration of the fact that they are analogs

to a complex amplitude. To provide an accurate description, we must also account

for a second input, considering that the vacuum is always present and to preserve

the commutation relations for the ladder operators.1

The beam splitter is defined by the transformation

(
b̂1
b̂2

)
=

(
t′ r
r′ t

)(
â1
â2

)
, (3.1)

where r and t stand for reflection and transmission coefficients, respectively. The

conditions for energy conservation are

|r′| = |r| , |t′| = |t| , |r|2 + |t|2 = 1 ,

r∗t′ + r′t∗ = 0 , (3.2)

1For more classical-like states, such as thermal or sufficiently large coherent states, the vacuum
contribution becomes negligible, and a classical description suffices.
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r∗t+ r′t′
∗
= 0 .

These conditions also force the transformation to be unitary.

In the case of a balanced BS, the intensity must be equally distributed across

all paths, so |r| = |r′| = |t| = |t′| = 1√
2
. Additionally, if the reflected waves have a

phase shift of π
2
relative to the transmitted wave (which is the usual in commercially

available devices), the transformation for the BS is given by

(
b̂1
b̂2

)
=

1√
2

(
1 i
i 1

)(
â1
â2

)
. (3.3)

The choice of phase shift is entirely arbitrary and depends on the specific construction

of the BS. We can account for this arbitrariness by independently shifting the phase

in each path before and after the BS, as shown by the following transformation:

(
b̂1
b̂2

)
=

1√
2

(
eiϕo1 0
0 eiϕo2

)(
1 i
i 1

)(
eiϕi1 0
0 eiϕi2

)(
â1
â2

)
. (3.4)

The real-bordered transformation for a 2-port BS is then

B2 =
1√
2

(
1 1
1 −1

)
. (3.5)

This is the discrete or quantum Fourier transformation, and also a Hadamard trans-

formation. Since the BS transformation is unitary, there exists a unitary operator Û2

such that

(
b̂1
b̂2

)
= Û †

2

(
â1
â2

)
Û2 . (3.6)

For the specific transformation in Eq. (3.3), the unitary operator is

Û2 = exp
(
i
π

4

(
â†1 â2 + â1â

†
2

))
. (3.7)
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To verify this, one can use the BCH formula. This allows us to describe the BS from

another perspective: propagation through a coupled waveguide array. In an optical

dimer [25], the evolution operator is

Û2(γ) = exp
(
γâ†1 â2 − γ∗â1â

†
2

)
, (3.8)

where γ = θeiδ is the complex coupling between the waveguides. The balanced beam

splitter described in Eq. (3.7) is recovered when θ = π
4
and δ = π

2
. Here, θ = κz,

where κ is the coupling constant (spatial frequency) and z the propagation distance.

Thus, θ is the relevant dimensionless parameter that evolves the system. The matrix

representation of the evolution in Eq. (3.8) is

U2M(θ, δ) =

(
cos θ eiδ sin θ

−e−iδ sin θ cos θ

)
. (3.9)

Both descriptions of the BS are useful in different contexts. The first is used for free-

space propagation, and the second applies to waveguide or optical fiber propagation.

3.1.2. Two-Port Mach-Zehnder Interferometer

Now that we have defined the BS, we can proceed to construct an interferometer.

Using the free-space approach, the Mach-Zehnder interferometer (MZI) is represented

in Figure 3.2.



49

Fig. 3.2: Representation of a 2 input, 2 output Mach-Zehnder interferometer (MZI2). The
âi (b̂i) are the annihilation operators at the input (output) of the i-th path, ϕi is the phase
shift in the i-th path, M are mirrors and Di are detectors.

As shown in Section 3.1.1, the input and output phases in the BS are arbitrary.

Thus, the contribution from the mirrors becomes irrelevant. Therefore, we use a

simpler representation of the interferometer, as shown in Figure 3.3, which is valid

in both free-space and non-free-space scenarios.

Fig. 3.3: Simple representation of a 2 input, 2 output Mach-Zehnder interferometer. Φ2

shifts the phase independetely in each path.

The phase shift operator is given by

Φ2 =

(
eiϕ1 0
0 eiϕ2

)
. (3.10)

Thus, considering the BS in Eq. (3.3), the complete transformation of the MZI is

M2 = B2Φ2B2 =
1

2

(
eiϕ1 − eiϕ2 i

(
eiϕ1 + eiϕ2

)
i
(
eiϕ1 + eiϕ2

)
eiϕ2 − eiϕ1

)
. (3.11)
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To measure the phase shift, we define the output intensity difference operator as

n̂12(ϕ) = b̂†1 b̂1 − b̂†2 b̂2 = cosϕ
(
â†2 â2 − â†1 â1

)
+ sinϕ

(
â†1 â2 + â†2 â1

)
, (3.12)

where ϕ = ϕ1 − ϕ2 is the relative phase shift between the two paths of the interfero-

meter. Since the problem only depends on ϕ, rather than ϕ1,2 individually, we focus

on measuring this relative phase.

One can determine ϕ from the measurement ⟨n̂12⟩. However, to achieve an op-

timal result, the uncertainty associated with this measurement must be minimized.

The uncertainty in the measurement of ϕ can be analyzed by developing the varian-

ce in n̂12 using the error propagation formula via partial derivatives, leading to the

following expression:

〈
n̂2
12

〉
− ⟨n̂12⟩2 =

(
∂⟨n̂12⟩
∂ϕ

∆ϕ

)2

,

∆ϕ =

√
⟨n̂2

12⟩ − ⟨n̂12⟩2∣∣∣∣∂⟨n̂12⟩
∂ϕ

∣∣∣∣ . (3.13)

To show how the uncertainty can be reduced using quantum resources, we consi-

der two different states: a semi-classical state |α⟩ ⊗ |0⟩ = |α, 0⟩, corresponding to a

coherent state and the vacuum state, and a quantum featured state |α⟩⊗|ξ⟩ = |α, ξ⟩,

corresponding to a coherent state and a squeezed vacuum state.2 The main results

for these states are presented as follows:

2Each mode is related to a specific path
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▶ |ψ0⟩ = |α, 0⟩. In this case, the phase noise is given by

∆ϕ =
1

|α sinϕ|
. (3.14)

This noise is minimized when ϕ = π
2
, yielding the minimum noise

∆ϕmin =
1

|α|
, (3.15)

which is the standard quantum limit (SQL), the best precision achievable using

only coherent light. For a numeric example, if we evaluate the minimum un-

certainty with 25 photons, we obtain

SQL2×2 = 0.2 . (3.16)

▶ |ψ0⟩ = |α, ξ⟩. Now the phase uncertainty is

∆ϕ =
1

|α|
(
1− sinh2 r

|α|2

)√(1 + sinh2(2r)

2|α|2

)
cot2 ϕ+

(
sinh2 r

|α|2
+ cosh(2r)− sinh(2r) cos(θ − 2φ)

)
, (3.17)

where α = |α|eiφ and ξ = reiθ (r > 0). If we assume the coherent state is

strong (large photon number), so that |α|2 ≫ sinh2 r, then the minimum when

ϕ = π
2
and φ = θ = 0 is

∆ϕmin =
e−r

|α|
. (3.18)

The accuracy is improved by a factor of e−r respect to the SQL, due to the pre-

sence of squeezed light. This expression provides an approximation for strong
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coherent light, but to evaluate numerically we use the result in Eq. (3.17).

For 25 photons, the minimum uncertainty achievable is 2×2 = 0.092 with a

squeezing parameter of |ξ| = 1.17. While this provides better precision, ins-

tead we use a squeezing parameter of 0.576 (the achievable in our laboratory,

corresponding to a squeezing degree of −5 dB), which gives an uncertainty of

(2×2)ξ = 0.117 . (3.19)

We can clearly observe the advantage of using squeezed light. The next step is

to apply the concepts introduced in Section 3.1 to more complex scenarios, where

we can measure multiple parameters more efficiently. Results based on this approach

are presented in Chapter 5.

3.2. Multi-Port Beam Splitter

In this section, we extend the two-port beam splitter to a multi-port beam splitter

(MBS). First, in Section 3.2.1, we discuss the constraints and present the mathema-

tical description of a MBS. Then, in Section 3.2.2, we briefly explain the technique

to experimentally implement a MBS in MCFs.

3.2.1. Mathematical description of a Multi-Port Beam Split-
ter

In the general case, the BS transformation is analogous to Eq. (3.1), where energy

conservation must hold, or equivalently, the transformation must be unitary. For

2-port and 3-port BS, restrictions arising from energy conservation determine the

transformation coefficients up to phase shifts at the input and output, leading to

only one equivalence class to describe the BS. This means that the physical meaning
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of the transformation remains unchanged when accounting for these phase shifts.

However, for 4-port and higher multi-port BS (MBS), energy conservation does

not completely determine all the internal phases of the transformation, leading to a

continuous set of different equivalence classes [44]. Consequently, one cannot simply

apply phase shifts at the input and output to obtain all possible transformations.

The most general beam splitter transformations, up to phase shifts at the input

or output and assuming equal transmission coefficient’s moduli, for 3-port and 4-port

systems are given by:

B3 =
1√
3

1 1 1
1 e2iπ/3 e4iπ/3

1 e4iπ/3 e2iπ/3

 , (3.20)

B4 =
1

2


1 1 1 1
1 eiϕ −1 −eiϕ
1 −1 1 −1
1 −eiϕ −1 eiϕ

 . (3.21)

The B3 transformation (and the 2-port case as well, Eq. (3.5)), are in fact the most

general unitary transformations. For the 4-port case, it may be possible that a

unitary transformation that does not represent a beam splitter exists, so we do not

claim the former in this case.

For the 3-port BS (and the 2-port case as well, Eq. (3.5)), the transformation re-

presents a Quantum Fourier Transform (QFT), with no free phases. For the 4-port

BS, however, there are physically distinct transformations for each value of ϕ, which

goes from 0 to π. For ϕ = 0, 1, we recover a real Hadamard transformation up to row

swaps, and for ϕ = π
2
, the transformation turns out to be the corresponding QFT

in 4-D. Since we have recovered the QFT, we can also perform the DFT (classical
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case) and inverse QFT. In general and up to a scalar ponderation, B4 corresponds

to a complex Hadamard matrix [45].

Our approach to realizing the transformation in Eq. (3.21) is further elabora-

ted in Chapter 4, where we present a method to implement these transformations

with physical systems.

3.2.2. Experimental Implementation of a MBS in MCF

As discussed in Section 3.1, beam splitters can be thought of as coupled waveguide

arrays at the correct propagation distance. This approach has been utilized to fabri-

cate balanced optical splitters [46]. Since the core of an optical fiber is essentially a

waveguide, an inline beam splitter can be modeled as a coupled waveguide array.

However, in a MCF, each core propagates a signal independently without mutual

interference. To implement a MBS, a section of the fiber is tapered, enabling core

coupling through strong evanescent effects. This technique is depicted in Fig. 3.4.

Fig. 3.4: Schematic of a MBS. The fiber is heated along a length L and pulled symmetri-
cally from both ends, stretching and thinning the fiber. The final device is the MBS and
has a length LW and a diameter DW . Figure from [1].

This tapering technique was recently introduced in [47] and utilized for, e.g.,
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quantum information processing [1], generating multidimensional entanglement [48],

and maximizing quantum discord [49]. It is worth noting that, implemented as in [1],

the resulting device effectively applies the transformation in Eq. (3.21) when ϕ = 0.
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In Chapter 4, we explore the propagation of quantum light through coupled

waveguides, analyzing how this approach enables the implementation of a multi-

port beam splitter and its potential applications in quantum optics and information

processing.

3.3. Polarization Manipulation in an Optical Fi-

ber

In Section 3.1, we considered interferometry under the assumption that all the

light was equally polarized, which allowed for effective interference. Polarization

changes and/or fluctuations degrade the quality of the interference, which leads to

lower precision in metrology [26], gate errors in photonic quantum computation [27],

or increased bit error rate in quantum cryptography [28]. Thus, to apply the con-

cepts discussed in that section, it is crucial to manipulate the polarization. This is

not only necessary for interference purposes but also useful for other applications of

polarization control, as will be further explored in Section 1.2.

While there are many polarization controllers available, we focus on the Thorlabs

inline polarization controller (IPC), shown in Fig. 3.5, as we are working with optical

fibers. The IPC is essentially a fiber squeezer, where the magnitude of the applied

force is regulated by a screw. The direction of the applied force can be changed by

rotating the fiber chamber (without rotating the fiber itself). When the fiber is com-

pressed, the IPC induces stress in the fiber, leading to birefringence in the fiber core,

which alters the relative phase between orthogonal polarizations.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2161
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Fig. 3.5: Side view of the inline polarization controller (IPC) by Thorlabs.

To represent the action of the IPC mathematically, consider the case where a

force is applied in the vertical direction. The corresponding transformation for the

polarization state is given by

P (0) =

(
eiϕh 0
0 eiϕv

)
, (3.22)

acting on the |H⟩ and |V ⟩ basis. Here, ϕh and ϕv are phase shifts applied to the

horizontal and vertical polarizations, respectively, depending on the number of turns

of the screw. When the applied force forms an angle θ with the vertical direction, we

apply a rotation to the operator in Eq. (3.22):

P (θ) =

(
eiϕh cos2 θ + eiϕv sin2 θ −

(
sin θ cos θ

(
eiϕh − eiϕv

))
−
(
sin θ cos θ

(
eiϕh − eiϕv

))
eiϕh sin2 θ + eiϕv cos2 θ

)
. (3.23)

This transformation gives the action of the IPC in terms of the phases it applies to

the horizontal and vertical polarizations. However, in practice, we need the trans-

formation in terms of the number of turns of the screw. To characterize this, let us

assume that the polarization state traveling through the fiber is

|ψ0⟩ = ph|H⟩+ pv|V ⟩ =
(
ph
pv

)
, (3.24)
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and that the polarization state after the action of the IPC is obtained by applying

the transformation in Eq. (3.23):

|ψ⟩ = P (θ)|ψ0⟩ . (3.25)

For instance, let us evaluate the Bloch parameters (see Section 2.2.2) of the

resulting state in Eq. (3.25), as a function of the relative phase ∆ = ϕv−ϕh, induced

when a vertical force (θ = 0) is applied to all the polarization states considered in

Section 2.2.2. The obtained results are:

a⃗ψ =



(1, 0, 0) , when |ψ0⟩ = |H⟩,
(0, cos∆, sin∆) , when |ψ0⟩ = |D+⟩,
(−1, 0, 0) , when |ψ0⟩ = |V ⟩,
(0,− cos∆,− sin∆) , when |ψ0⟩ = |D−⟩,
(0,− sin∆, cos∆) , when |ψ0⟩ = |R⟩,
(0, sin∆,− cos∆) , when |ψ0⟩ = |L⟩.

(3.26)

Each of these is a curve in the Bloch sphere parameterized by ∆ (see Fig. 6.4). To

determine the dependence on the number of turns, we must know how ∆ varies with

the number of turns. From Eq. (3.26), it is evident that no information about ∆

can be extracted when |ψ0⟩ ∈ |{H⟩, |V ⟩}. In general, this limitation holds if the

force is parallel or orthogonal to the polarization. For other polarizations, one Bloch

parameter remains constant—the parameter associated with horizontal and vertical

polarization. In practice, this parameter will liketly not remain perfectly constant

due to experimental deviations. To address this, we introduce an “error” phase ε,

which accounts for variations in the constant Bloch parameter and preserves the

Bloch vector’s unitarity. Incorporating ε, the Bloch vectors of Eq. (3.26) become
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a⃗ψ =


(sin ε, cos ε cos∆, cos ε sin∆) , when |ψ0⟩ = |D+⟩,
(sin ε,− cos ε cos∆,− cos ε sin∆) , when |ψ0⟩ = |D−⟩,
(sin ε,− cos ε sin∆, cos ε cos∆) , when |ψ0⟩ = |R⟩,
(sin ε, cos ε sin∆,− cos ε cos∆) , when |ψ0⟩ = |L⟩.

(3.27)

Given the Bloch vector, we can solve for ε from a1, and then retrieve ∆ from a2

or a3 (since the Bloch vector is unitary, the ∆ value retrieved from a2 and a3 will be

equal).

The transformation in Eq. (3.23) assumes an ideal case where the fiber core

is perfectly aligned with the applied force, such as in a single mode fiber (SMF). For

multi-core fibers (MCF), however, the transformation could be more complex due

to misalignments between the cores and the applied force, and the fiber’s structure

influencing the polarization’s response depending on the core’s location. Thus, for

a MCF, there should be a transformation Pj(θ) for each core. Results towards the

reconstruction of these operators are presented in Chapter 6.



Chapter 4

Multi-Port Beam Splitter

In this Chapter, we consider coupled waveguide arrays to model beam splitters,

and analytically study light propagation with distinct objectives. First, in Section

4.1, we propagate squeezed states through an optical dimer to better understand

squeezed light dynamics, placing special emphasis on a potential squeezing degree

conservation. Finally, in Section 4.2, we focus on the capability of MBSs to perform

operations by analyzing a four-waveguide array to model a 4-port BS, as it would be

on a multi-core fiber, retrieving the general transformation in Eq. (3.21).

4.1. Squeezing Degree Conservation in an Optical

Dimer

Propagation through a closed waveguide array system is periodic, making it na-

tural to consider conserved quantities. In this thesis, we investigate the evolution

of complex squeezing parameters in an optical dimer, to better understand the dy-

namics of squeezing propagation by focusing on conserved quantities. Recent work

has used this approach to analytically construct multi-mode squeezed states from

single-mode squeezed states [25]. However, the perspective of conserved quantities is

yet to be explored.

60
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For this purpose, we use the evolution operator of Eq. (3.8). Suppose we inject a

single-mode squeezed state into each waveguide, generated as |ψ0⟩ = Ŝ1(ξ1)Ŝ2(ξ2)|0⟩.

After propagating through the dimer, the state evolves into [25]

|ψ⟩ = Û2(γ)Ŝ1(ξ1)Ŝ2(ξ2)Û
−1
2 (γ)|0⟩

= exp

(
1

2

(
T ∗
1 â

2
1 + T ∗

2 â2 + T12â
†
1 â

†
2 −H.c.

))
|0⟩ , (4.1)

where T1,2 and T12 are the complex squeezing parameters of single- and two-mode

squeezing, respectively. These parameters can be evaluated using the BCH, arriving

at:

T1 = ξ1 −
(
ξ1 − e2iδξ2

)
sin2 θ ,

T2 = ξ2 + e−2iδ
(
ξ1 − e2iδξ2

)
sin2 θ ,

T12 = −e−iδ
(
ξ1 − e2iδξ2

)
sin(2θ) .

(4.2)

We observe the repetition of the term ξ1 − e2iδξ2, which dictates the direction and

magnitude of changes in the complex squeezing parameters. Notably, when this term

equals zero, the propagated state remains unchanged at all points of the propagation.

Additionally, T12 can be expressed in terms of T1 and T2 as

T12 = e−iδ
dT1
dθ

= −eiδ dT2
dθ

. (4.3)

This indicates that multi-mode squeezing is maximized when single-mode squeezing

varies rapidly.

Regarding conserved quantities, based on the coefficients in Eqs. (4.2), we de-

fine
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Λ1(δ) = T1 + e2iδT2 , (4.4)

Λ2(δ) =
∣∣T1 − e2iδT2

∣∣2 + |T12|2 , (4.5)

which are both constant with respect to θ. Note that the right-hand side of Eq. (4.3)

is obtained by differentiating Eq. (4.4). These constants evaluate to

Λ1(δ) = ξ1 + e2iδξ2 , (4.6)

Λ2(δ) = |ξ1|2 + |ξ2|2 − 2ℜ
(
e2iδξ∗1ξ2

)
. (4.7)

Since both Λ1 and Λ2 are constants, any combination of them is also a constant.

Thus, we define

Λ3 = |Λ1(δ)|2 + Λ2(δ) = 2
(
|ξ1|2 + |ξ2|2

)
, (4.8)

a third constant that depends solely on the squeezing parameters, |ξ1| and |ξ2|.

These results reveal key aspects of squeezing dynamics in an optical

dimer, offering a deeper understanding of the interplay between single-

and two-mode squeezing dynamics, and how initial complex squeezing pa-

rameters govern the evolution and stability of the quantum state. Future

work will explore extending these results to larger waveguide systems, with particular

attention to Eq. (4.3) and the conserved quantities Λi. These findings hold potential

applications in quantum information processing and sensing, providing a foundation

for developing state engineering. A manuscript is currently being prepared.
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4.2. Fourier Transform in a 4-Port Beam Splitter

with Diagonal Coupling

As mentioned in Section 3.2.2, the tapering technique implements the specific

case of Eq. (3.21) when ϕ = 0. This could be considered a limitation recalling that

for ϕ = π
2
a Fourier transform is recovered. In this thesis, we propose varying the

diagonal coupling in order to completely parameterize Eq. (3.21). Previous work with

a similar approach found applications in quantum light manipulation [43]. However,

the effects of varying the relative coupling strengths were not explored.

Consider the system in Fig. 4.1 to modelate the 4-port BS.

Fig. 4.1: System of 4 coupled waveguides with diagonal coupling. The waveguides, or cores
in a MCF, are numbered. 1 and ε are relative coupling strengths, where ε ∈ [0, 1].

The system in Fig. 4.1 takes into account that diagonal coupling should be less

intense, but the phase acquired through the diagonal is the same as the other sides.

The parameter ε represents the fraction that the diagonal coupling is to the sides

coupling. The unitary operator that represents this system is
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Uε(θ; ε) = exp (iθ (λ12 + λ23 + λ34 + λ14 + ε(λ13 + λ24))) , (4.9)

where λij = âiâ
†
j + â†i âj and we chose the coupling phase to be δ = π

2
. Evolving the

annihilation operators as b̂i = U †
ε âiUε we find that Eq. (4.9) is equivalent to

Uε

(π
4
; ε
)
=

1

2


e−

iπε
4 ie

iπε
4 −e− iπε

4 ie
iπε
4

ie
iπε
4 e−

iπε
4 ie

iπε
4 −e− iπε

4

−e− iπε
4 ie

iπε
4 e−

iπε
4 ie

iπε
4

ie
iπε
4 −e− iπε

4 ie
iπε
4 e−

iπε
4

 .

To find the real-bordered transformation we consider the following phase shifts at

input (D1) and output (D2):

D1 =


1 0 0 0

0 e
iπ
2
(3−ε) 0 0

0 0 −1 0

0 0 0 e
iπ
2
(3−ε)

 , D2 =


e

iπ
4
(ε−8) 0 0 0

0 e−
iπ
4
(2+ε) 0 0

0 0 e
iπ
4
(ε−4) 0

0 0 0 e−
iπ
2
(2+ε)

 .

Thus, the real-bordered transformation is

D1Uε

(π
4
; ε
)
D2 =

1

2


1 1 1 1
1 −e−iπε −1 e−iπε

1 −1 1 −1
1 e−iπε −1 −e−iπε

 , (4.10)

which is the quantum Fourier transform (QFT) for ε = 1
2
. If we compare this ex-

pression to Eq. (3.21), we note a few sign changes, nontheless the actual coefficient

values over the ϕ and ε domain are exactly the same, so we recover the general

complex Hadamard matrix. It should be possible then to generate any 4-D

unitary transformation with the system of Fig. 4.1, adjusting the size of

the square (thus changing the diagonal coupling respect to the sides coupling).
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These results highlight the flexibility of the proposed 4×4 MBS model

with diagonal coupling, demonstrating its capability to perform arbitrary

4-D unitary transformations by tuning the relative coupling strengths.

Notably, the system is able to perform a QFT, which holds significant

applications in quantum information processing and communication, as

discussed in Section 1.2. Future work could explore the experimental realization

of such systems and their extension to higher-dimensional transformations.



Chapter 5

Multi-Port Mach-Zehnder
Interferometer

In this Chapter, we analytically study a MZI of N inputs and N outputs, labeled

as N×N MZI, in a search for configurations that allows us to make efficient and

precise measurements. To this date, we have been working for N = 3, 4, although the

results appear to extend to higher dimension. We will explore this after the results

of this thesis are published.

First, in Section 5.1, we show the mathematical model for the N×N MZI, and

define the maximal uncertainties ∆Mϕ we will be minimizing. In Section 5.2, we dis-

cuss the impact of using a certain set of relative phases (or parameters) to describe

the system, and the physical meaning of this free of choice. Sections 5.3 and 5.4 are

devoted to numerical results: in Section 5.3 we measure the “same” operator as in

the 2×2 case, finding configurations that allow for multi-parameter estimation with

enhanced precision due to the presence of squeezed states, and in Section 5.4 we

measure an extended operator, obtaining (with coherent light) configurations robust

to unwanted phase shifts, and further increasing the precision by utilizing squeezed

states.

66
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5.1. Mathematical Model of N×N MZI

To construct an N×N MZI, the procedure is the same as in the 2×2 case described

in Section 3.1.2, but now we use N states or signals for the N paths, along with a

N -port BS from Section 3.2.1. Since in our approach we transform the annihilation

operators for each path or mode, the N×MZI is represented by Fig. 5.1.

Fig. 5.1: Scheme of an N×N MZI. a⃗ and b⃗ are the vectors containing the annihilation
operators at the input and output respectively.

Naming the operator representing the full interferometer as MN , we have

b⃗ = BNΦNBN a⃗ = MN a⃗ , (5.1)

BN ≡ Unitary N×N matrix; ΦN = diag{eiϕ1 , . . . , eiϕN} .

Let us assume we measure ⟨Ô⟩ = ⟨Ô(⃗b)⟩. From this measurement, we should be

able to solve for ΦN . However, in this study, we focus solely on the precision of the

measurements performed.

To quantify this, we use the error propagation formula via partial derivatives

(as in Eq. (3.13)) to define the maximal uncertainties as

∆Mϕi =

√
⟨Ô2⟩ − ⟨Ô⟩2∣∣∣∣∣∂⟨Ô⟩∂ϕi

∣∣∣∣∣
. (5.2)
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Eq. (5.2) represents the noise on ϕi when treated as the sole variable in the system.

Considering error propagation for ⟨Ô⟩, we derive the constraint

N−1∑
i=1

(
∆ϕi
∆Mϕi

)2

= 1 . (5.3)

Eq. (5.2) defines the error ellipse with semi-axes ∆Mϕi. Clearly ∆ϕi ≤ ∆Mϕi, put-

ting an upper bound on the uncertainty, that is easy to compute. Thus, minimizing

these maximal noises provides a practical first approach to optimizing measurement

precision.

5.2. Relevant Phase Shifts

The procedure described in the previous section assumes dependence on all N

induced phase shifts ϕi. However, the global phase of any quantum state is physically

meaningless, so there are many ΦN physically equivalent. As a consequence, our

measurements depend only on relative phase shits. A common approach at this

point is to fix one of the ϕi values to zero. For any measurement, this choice does not

affect the physical outcomes. However, this approach alters the parameters used to

describe the system, and each parameter has an associated sensitivity1. Therefore,

from the perspective of parameter uncertainty, the choice of which phase is set to zero

is not entirely irrelevant. What should we do then? To address this, let us define the

transformation from the N induced phases to all the

(
N
2

)
possible induced relative

phases as:

1This arises because the derivatives in Eq. (5.2) depend on the chosen parameterization.
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T : {ϕi} −→ {ϕjk = ϕj − ϕk}

ϕ⃗ 7−→ ϕ⃗rel .

For N = 4, this transformation can be expressed in matrix form as:


ϕ12

ϕ13

ϕ14

ϕ23

ϕ24

ϕ34

 =


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1



ϕ1

ϕ2

ϕ3

ϕ4

 . (5.4)

Clearly, kerT = span{(1, . . . , 1)} for any N . Thus, from the rank-nullity theorem,

we find that rank T = N − 1, meaning that we only need N − 1 relative phases to

completely describe the system. While this result is expected, it is explicitly demons-

trated here.

Furthermore, the number of sets containing linearly independent relative phases—

i.e., the number of sets of parameters we could use—is 1 for N = 2 (just {ϕ12}), and

for N ≥ 3 it is

(
N
2

)
(N − 1)!

N−2∏
i=1

((
N
2

)
−
(
i+ 1
2

))
. (5.5)

This sequence follows the progression 1, 3, 15, 256, . . ., making it computationally

prohibitive to explore all possible combinations in high dimensions. Fortunately, noi-

se behavior tends to be similar across certain sets, so it is unnecessary to analyze

every combination exhaustively. In this thesis, we present results for just two parame-

ter sets in the 3×3 and 4×4 cases, while briefly commenting on outcomes for other sets.
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But what is the physical meaning of choosing one set of relative phases over

another? The relative phases in the selected set are the ones we focus on controlling

or measuring during the experiment. Since only N − 1 of these phases are simulta-

neously relevant, we can concentrate exclusively on these N−1 parameters, choosing

them conveniently. This choice of convenience depends on our specific aim, as will

be demonstrated.

5.3. Enhancing Precision with Squeezed light

In this section, we demonstrate how optimally choosing the parameter set and

utilizing squeezed states can enhance precision in multi-parameter estimation within

an N×N MZI for N = 3, 4. To achieve this, we compare the maximal phase shifts

uncertainty obtained in the multi-port case (the maximal uncertainties from Eq.

(5.2)) with the SQL for the standard 2×2 interferometer (Eq. (3.16)) and its re-

duced noise when using squeezed sates (Eq. (3.19)). The input state will consist of

either a coherent state or a vacuum single-mode squeezed state in each path of the

interferometer. All evaluations are conducted under the same conditions: a total of

25 photons and a maximum squeezing parameter of 0.576 per squeezed state (our

maximum achievable, −5 dB). For this analysis, we measure Ô2 = n̂12 = b̂†1 b̂1 − b̂†2 b̂2

as a first approach to the problem.

5.3.1. 3× 3 MZI

In the 3×3 case, as indicated by Eq. (5.5), there are 3 possible sets of parameters.

In this section, we present results for the sets {ϕ12, ϕ13} and {ϕ12, ϕ23}. Using the

assumptions mentioned earlier and the input state |ψ0⟩ = |α, ξ1, ξ2⟩, where α = 5,
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the main results for the 3×3 interferometer are the ones in Fig. 5.2.

Δϕ12 Δϕ13

0 π
3

2π
3 π 4π

3
5π
3

0

0.2

0.4

0.6

0.8

Δϕ12 Δϕ13

0 π
3

2π
3 π 4π

3
5π
3

0

0.2

0.4

0.6

0.8

Δϕ12 Δϕ23

0 π
3

2π
3 π 4π

3
5π
3

0

0.2

0.4

0.6

0.8

Δϕ12 Δϕ23

0 π
3

2π
3 π 4π

3
5π
3 2π

0

0.2

0.4

0.6

0.8

Fig. 5.2: Uncertainty plots for a 3×3 MZI using Ô2 compared with the SQL (back dashed
line) and reduced uncertainty (gray dashed line) with ξ = 0.576 for the 2×2 MZI. The input
state is |ψ0⟩ = |α, ξ1, ξ2⟩ where α = 5. The magenta dashed line stands for the same effective
ΦN . Results are shown for two relative phase shift sets, {ϕ12, ϕ13} in a.1) and b.1), and
{ϕ12, ϕ23} in a.2) and b.2). Panels a.1) and a.2) correspond to no squeezing (ξ = 0), while
b.1) and b.2) incorporate squeezing with ξ1 = 0.576 exp

(
2π
3 i
)
and ξ2 = 0.576 exp

(
4π
3 i
)
.

In Fig. 5.2, one phase shift is fixed for illustrative purposes. However, the key

factor is the specific transformation applied, ΦN , represented by the magenta dashed

line. Let us proceed with the analysis.

Coherent Light (Upper Half of Fig. 5.2)

For coherent light, the achievable uncertainty never equals the SQL of the 2×2

case, regardless of ΦN or the chosen set of relative phases. This implies that the SQL

for the 3×3 MZI is inherently greater than that of the 2×2, specifically:



72

SQL3×3 = 0.245 . (5.6)

Moreover, the choice of parameter set affects precision. In Fig. 5.2(a.1), for a given

ΦN , only one parameter achieves minimal uncertainty, whereas in Fig. 5.2(a.2), the

same ΦN results in equal minimal uncertainties for both parameters.

Coherent and Squeezed Light (Bottom Half of Fig. 5.2)

Now for the bottom half, we examine the effects of introducing squeezed states

into the system by injecting a squeezed state into each of the remaining paths.

Comparing Fig. 5.2 (a.1) with (b.1), and (a.2) with (b.2), we observe a clear

improvement in the minimum uncertainty, surpassing both the 2×2 and

3×3 SQLs. In this case, the uncertainty is2

(3×3)ξ = 0.145 . (5.7)

Interestingly, using only one squeezed state brings the minimum uncertainty close

to the SQL2×2. Adding a second squeezed state further decreases the uncertainty.

Again, the choice of parameter set has a significant impact. In Fig. 5.2(b.1), reduced

uncertainty is achieved for one parameter, whereas in Fig. 5.2(b.2), two parameters

benefit from reduced uncertainty.

This implies that with the parameter set on the left side, increasing the sys-

tem’s dimension does not provide an advantage: only one parameter sees increased

uncertainty. Conversely, the parameter set on the right side enables the measure-

ment of two parameters simultaneously with reduced noise, although whether this

2If we allow for any squeezing parameter then we achieve uncertainty 0.128 when |ξ1| = |ξ2| =
0.882.
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reduction suffices depends on the specific needs. It is also noteworthy that for the

minimum at ϕ12 = 4π
3

in the right hand side of Fig. 5.2, the uncertainty increases

when using squeezed light. This suggests that the advantage of squeezing may be

more localized on the system or phase shift parameters space.

5.3.2. 4× 4 MZI

In the case of the 4×4 MZI, we have 15 possible sets from Eq. (5.5), and we

present results for {ϕ12, ϕ13, ϕ14} and {ϕ12, ϕ23, ϕ34}. Under the same assumptions as

before, the input state |ψ0⟩ = |α, ξ, 0, 0⟩, where α = 5i, the main results for the 4×4

MZI are shown in Fig. 5.3.
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Fig. 5.3: Uncertainty plots for a 4×4 MZI using Ô2 and comparing with the SQL (back
dashed line) and reduced noise (gray dashed line) with ξ = 0.576 for the standard 2×2
MZI. The input state is |ψ0⟩ = |α, ξ, 0, 0⟩ where α = 5i. The magenta dashed line stands
for the same effective ΦN . Results are presented for two phase shifts sets: {ϕ12, ϕ13, ϕ14}
for a.1) and b.1), and {ϕ12, ϕ23, ϕ34} for a.2) and b.2). Additionally, for a.1) and a.2) we
have no squeezing (ξ = 0), and for b.1) and b.2), we have a squeezing parameter ξ = 0.576.
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Coherent Light (Upper Half of Fig. 5.3)

For the 4×4 MZI with coherent light, particularly for the set {ϕ12, ϕ23, ϕ34}, the

minimal uncertainty in one of the phase shifts equals the SQL in 2×2, so this would

be the SQL in 4×4 as well:

SQL4×4 = SQL2×2 = 0.2 , (5.8)

at least for this specific parameter, set, and measurement. This uncertainty level

is not achievable for any variable/configuration with, for example, {ϕ12, ϕ13, ϕ14}.

Unlike the 3×3 case, the uncertainty behavior in the 4×4 system is more diverse,

with different uncertainty levels depending on the set of relative phases. This makes

the choice of phase set even more crucial.

Coherent and Squeezed Light (Bottom Half of Fig. 5.3)

Now, let’s turn to the bottom half of Fig. 5.3, where we introduce squeezing. He-

re, we analyze the results for a system where only one squeezed state is injected. By

comparing Fig. 5.3 (a.1) with (a.2), and (a.2) with (b.2), we observe a reduction in

uncertainty for the transformation defined by the magenta line in both sets of relati-

ve phases. For every relative phase, except ϕ23, the uncertainty approaches

the SQL3×3, while for the preciser parameter, ϕ23, it approaches (2×2)ξ.

It is important to note that we have only presented results with squeezed light

applied to one path in the 4×4 case. This is because injecting squeezed states into

additional paths does not affect the minimum represented by the magenta line. Ins-

tead, the minimum at ϕ12 = π (for both sets) is decreased. However, this reduction

is not as significant as the one showed in Fig. 5.3.
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5.3.3. Section Conclusions

From the results in the previous subsections, for both the 3×3 and 4×4 MZIs, we

can lower the uncertainty below their respective SQLs, achieving reasonable levels

for multi-parameter estimation, compared to the 2×2 case. However, in practice, the

optimal configuration and even dimension of the system will depend on our specific

goals. In the 3×3 case, we can achieve all uncertainties below the SQL2×2, but only

marginally. For the 4×4 case, we can achieve the same precision as in the squeezed-

enhanced 2×2 case, but the precision for the other parameters does not go below the

SQL2×2.

Another critical point in the analysis of these results is the apparent impossi-

bility of exploiting multiple squeezed states to simultaneously enhance precision. To

better understand this limitation and maximize the utility of squeezed states, further

study of squeezing dynamics is required.

5.4. Robust Uncertainty

Up to now, the behavior of uncertainties has been similar to that of the 2×2 inter-

ferometer, likely due to the use of the “same” operator, Ô2 = b̂†1 b̂1−b̂
†
2 b̂2. If we naively

extend this operator to higher dimensions, we could propose Ô3 = b̂†1 b̂1− b̂†2 b̂2+ b̂†3 b̂3

and Ô4 = b̂†1 b̂1− b̂
†
2 b̂2+ b̂

†
3 b̂3− b̂

†
4 b̂4 for 3×3 and 4×4 MZIs, respectively. This approach

actively incorporates all the information available at the output.

Naturally, there is a lot of possibilities, such as using any linear combination

of the output intensities. Exploring these alternatives could be worthwhile, but as
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a first approach, we focus on the operators mentioned above. For consistency, we

continue using an input state formed in the same manner, with 25 photons and a

maximum squeezing parameter of 0.576 when comparing numerical results.

5.4.1. 3×3 MZI

For the 3×3 MZI, we present results using only the set {ϕ12, ϕ13} and coherent

light, since for this results the set and dimension do not introduce any useful effect.

We propagate two input states composed of coherent light, obtaining the following:

|ψ0⟩ =
∣∣α0e

iφ1 , 0, α0e
i(φ1+

π
3
)
〉
−→ ∂∆Mϕ12

∂ϕ13

= 0 ,

|ψ0⟩ =
∣∣α0e

iφ1 , 0, α0e
i(φ1−π

3
)
〉
−→ ∂∆Mϕ13

∂ϕ12

= 0 ,

(5.9)

where α0 ∈ R+
0 . From Eq. (5.9), we observe that setting the coherent states’ relative

phase to ±π
3
ensures that the uncertainty of one parameter is independent of the

other. This configuration could be beneficial for implementing robust measurements,

although only one of the uncertainties can be minimized at a time.

Numerically, the results are less promising. For α0 =
5√
2
, the minimum of uncer-

tainty achieved is 0.33. Furthermore, introducing squeezed states or using alternative

parameter sets does not significantly improve the performance. Squeezed states redu-

ce the uncertainty to approximately 1.8, but only within a narrow parameter regime,

and other parameter sets fail to reveal any distinct or advantageous behavior.

5.4.2. 4×4 MZI

In the 4×4 case, we explore the use of squeezed states and additional parameter

sets, as the results are notably more promising compared to the 3×3 case.

3It is possible to achieve the SQL3×3 from the previous section with other configurations.
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▶ {ϕ12, ϕ13, ϕ14} For this parameter set, propagating coherent light as |ψ0⟩ = |α1, 0, α2, 0⟩, where

α1,2 ∈ C, we find the following results:

∂∆Mϕ12

∂ϕ13

=
∂∆Mϕ14

∂ϕ13

= 0 , (5.10)

∂∆Mϕ13

∂ϕ12

=
∂∆Mϕ13

∂ϕ14

= 0 . (5.11)

These results are already more promising than those for the 3×3 MZI. First,

Eqs. (5.10) and (5.11) hold for any pair of coherent states used. Second, this

configuration provides more overall robustness. However, while both Eqs. (5.10)

and (5.11) are true simultaneously, ∆Mϕ12,14 and ∆Mϕ13 cannot be minimized

at the same time (for the same ΦN). Consequently, careful tuning of the input

states is required, along with a clear understanding of which parameters are

being targeted for precise and robust measurements.

Numerically, using |α1,2| = 5√
2
, we achieve an uncertainty of SQL2×2 = 0.2,

which is a strong result. When trying to enhance the precision with squeezed

states, we find that

|ψ0⟩ =
∣∣∣∣ 5√

2
,−ξ0,

5√
2
,−ξ0

〉
−→ min ∈ [0.119, 0.124] , (5.12)

where ξ0 = 0.5764. The resulting uncertainty lies within a small interval due to

the squeezed states introducing slight variations related to the previously irre-

levant parameters, reducing the robustness achieved. However, this robustness

reduction remain small as long as the squeezing parameter is not excessively

4Allowing for any squeezing parameter we can achieve a minimum uncertainty of 0.104 with
|ξ1,2| = 0.927 and ϕ12 = π

2
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large. This minimum is for either ϕ12,14 or ϕ13, depending on the chosen para-

meters for measurement.

▶ {ϕ12, ϕ23, ϕ34} Starting with the same input state |ψ0⟩ = |α1, 0, α2, 0⟩ where α1,2 ∈ C, we find:

∂∆Mϕ12

∂ϕ34

=
∂∆Mϕ34

∂ϕ12

= 0 , ∀α1,2 , (5.13)

∂∆Mϕ23 =


∂∆Mϕ23

∂ϕ12

, if φ1 − φ2 = 0,

∂∆Mϕ23

∂ϕ34

, if φ1 − φ2 = π.
(5.14)

In this case, not all parameter uncertainties can be minimized or made robust

simultaneously, requiring a choice between measuring {ϕ12, ϕ23} or {ϕ34, ϕ23},

with the input state adjusted accordingly. For this set, we also achieve SQL2×2

precision with 25 photons. Further minimizing with squeezed states yields:

|ψ0⟩ =
∣∣∣∣ 5√

2
,−ξ0,−

5√
2
,−ξ0

〉
−→ min ∈ [0.119, 0.124] , (5.15)

where ξ0 = 0.5765. The interval for the minimum arises due to the same effect

described from Eq. (5.12).

Comparing the results obtained for both sets, we see that numerically, they pro-

vide similar precision improvements. However, with {ϕ12, ϕ13, ϕ14}, one uncertainty

can be made independent of two parameters, or two uncertainties can be indepen-

dent of one parameter each. In contrast, with {ϕ12, ϕ23, ϕ34}, only two uncertainties

can be made independent of a single parameter. The optimal set will thus depend

on the specific measurement goals.

5Allowing for any squeezing parameter we get the same minimum as with the other parameters
set.



79

5.4.3. Section Conclusions

As presented in this subsection, using Ô3,4 introduces more complex behaviors

to the measurement, enabling for parameter uncertainties to become independent of

other parameters. While the effectiveness in the 3×3 case does not appear particularly

promising, the 4×4 case achieves precision levels comparable to the 2×2 interferome-

ter but with added robustness and enhanced precision for certain parameters. This

makes the 4×4 configuration a strong candidate for high-precision measurements.

Additionally, we have not yet explored a large portion of the 15 parameter sets or

input states, leaving room for potentially more interesting results in future studies.

5.5. Chapter Conclusions and Future Work

In this chapter, we have analytically demonstrated that a multi-port MZI can

function as an optical sensor for single- or multi-parameter estimation, offering en-

hanced precision and/or robustness based on specific requirements. Squeezed light

enabled precision enhancements for certain parameters, achieving levels comparable

to the standard 2×2 MZI. Additionally, measurements involving only coherent light

exhibited robustness by flattening uncertainty in targeted parameters, mitigating the

influence of unwanted phase variation. Although the precision achieved is not strictly

superior to that of the 2×2 interferometer, we expect that the advantages offered by

increased dimensionality—such as reduced and/or robust uncertainties—may com-

pensate for this limitation.

These findings present direct applications in quantum metrology and commu-

nication, as discussed in Section 1.2. Future work could explore a wider variety of
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input states and operators measured, as well as pursue experimental verification of

the obtained theoretical results.



Chapter 6

Controlling the Polarization in a
MCF

As stated in Section 3.3, controlling polarization is essential for successful interfe-

rometry. This being the case, this chapter is a necessary first step to experimentally

implement the results in previous chapters. In this chapter, we aim to characterize

the transformations Pj(θ), which represent the effective action of the IPC in the j-th

core of a 4-core MCF. To achieve this, we apply a force with the IPC in 5 directions

to all the polarization states presented in Section 2.2.2 for each core. The data ob-

tained is directly compared with the theoretical SMF model of Section 3.3, and we

plan to utilize quantum process tomography to retrieve the transformations directly.

First, in Section 6.1, we describe the experimental setup used in the measure-

ments. Next, in Section 6.2, we present and discuss experimental results gathered

for reconstructing these transformations. Finally, in 6.3, we discuss the next steps

towards completing the reconstruction process.

81
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6.1. Experimental Setup

To construct the experimental setup, we first show the IPC equipped with a

MCF, including our core numeration, in Fig. 6.1.

Fig. 6.1: Front view of an IPC with a MCF, with its cores numerated. Figure courtesy of
Adheris Contreras, UdeC.

The full setup is represented in Fig. 6.2.

Set-up para mediciones de 
polarización 

Fig. 6.2: Setup for the characterization of the polarization in MCF. In order of propaga-
tion: Laser: continuous wave 1550 nm; PC: polarization controller (for SMF); DM: fiber
multiplexer for SMF to MCF; Propagation is now through free space thanks to a launcher;
PBS: polarizing beam splitter (we keep the horizontal component); QWP: quarter-wave
plate; HWP: half-wave plate; Polarimeter IPM5300: takes a SMF and gives the Bloch pa-
rameters of the signal. Figure courtesy of Adheris Contreras, UdeC.
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The setup operates as follows: The laser signal is first propagated through a SMF.

This SMF then passes through the PC, which serves the sole purpose of maximizing

the intensity of the signal used. The SMF is subsequently multiplexed into a MCF,

with only one core used at a time. The signal is then propagated through free space

using a launcher. Afterward, the signal passes through a PBS, retaining only the

horizontal component in the path. To maximize the intensity after this step, the

first PC is adjusted. The polarization of the signal is then set by adjusting a QWP

and a HWP. The adjusted signal is injected back into the corresponding core of the

MCF using a launcher. The fiber undergoes squeezing-induced polarization changes

through the action of the IPC, which is placed as close as possible to the beginning

of the MCF patch-core to minimize internal rotation of the fiber cores. The MCF

is demultiplexed again, transferring the signal back to a SMF. This SMF passes th-

rough another PC to compensate for any polarization changes that occurred during

propagation. Finally, the polarization of the signal is measured using a polarimeter.

The IPM5300-T polarimeter by Thorlabs operates using two pairs of Fiber Bragg

Gratings (FBGs) with polarization-dependent reflectivity, which divert a small frac-

tion of the transmitted optical power to four detectors. To enable the analysis of

an arbitrary polarization state, a quarter-wave fiber plate is positioned between the

two FBG pairs, generating the additional polarization states necessary for complete

characterization.

https://www.thorlabs.de/catalogpages/V21/1630.PDF
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6.2. Experimental Polarization Measurements in

a MCF

To fully characterize the transformation, we propagate through each core the

input states |H⟩, |D+⟩, |V ⟩, |D−⟩, |R⟩, |L⟩. For each combination, the fiber is squeezed

in 5 directions corresponding to θ = 0,±π
4
,±π

2
. The directions names are shown in

Fig. 6.3.

1

2 3

4

vpress

lhpress rhpress

rdpressldpress

Fig. 6.3: IPC directions nomenclature. The colors are the same as in Fig. 6.4.

The screw is turned at a rate of π
8
rad every 2 s, starting at turn 10 (when the

fiber is held still in the chamber) and stopping at turn 15.5 to avoid permanent de-

formation.

These results should allow us to reconstruct the IPC transformation on each

core for a spacific pressure direction and potentially generalize to other directions.

The results for the 4-th core of the MCF are shown in Fig. 6.4.
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Fig. 6.4: Polarization measurements plots for the 4-th core, for 5 directions and 6 initial
states. Figs. a), b), c), d), e) and f) correspond to the input state |H⟩, |D+⟩, |V ⟩, |D−⟩,
|R⟩ and |L⟩, respectively. The last number of the legends is the turn in which the polari-
zation started to move (the comma is the decimal separator). The segmented lines are the
theoretical curves in the case of a SMF. All the curves in this figure are on the front side
of the spheres.

From Fig. 6.4, we observe that for the 4-th core, the transformation is similar to

that of a central core. Moreover, they differ less in the vertical direction. This is li-

kely because vertical and horizontal forces are much easier to control experimentally.

Side cores, such as 2 and 3, show more pronounced deviations due to their positions

relative to the applied force, as one would expect. A sense flip between experimental

and theoretical curves is evident in some cases, e.g., in Fig. 6.4(b), where vertical

and horizontal directions are inverted. Further data and analysis are required to

comprehend these discrepancies.

Based on these results, we hypothesize that the corresponding transformation

of each core is just the operator on a SMF, but with a different angle for each core.

Thus, while the IPC might be aligned at θ, each core will have an associated θj. Part

of our goal is to test this toy model and discover θj.
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To evaluate the phase shift dependence on screw turns, we use Eqs. (3.27)—

and the analogous for other configurations—to solve for the relative phase ∆ and

the “error” phase ε. The results obtained for the 4-th core are in Fig. 6.5 (next page).

First, the left half of Fig. 6.5, corresponding to the experimentally retrieved ∆,

shows that the maximum ∆ is consistently around π
2
. As for the response range, we

note that right and left initial polarizations (red and blue lines) exhibit a broader

response range, allowing finer control. Initial linear polarizations (other colors) reveal

specific force directions that provide enhanced polarization control.

The right half of Fig. 6.5, corresponding to the experimentally retrieved ε, in-

dicates that ε remains relatively small, suggesting that the transformations for the

MCF cores are closely resemble those of a SMF. However, ε increases for diagonal

forces, likely due to challenges in precise screw alignment. This discrepancy, as well

as discrepancies in the Bloch sphere trajectories shown in Fig. 6.4 (c) and (f), could

also be explained if the effective angle for the j-th core, θj, varies with the force

applied. Developing the theoretical formulation of this idea, as well as conducting its

experimental verification, is left as a next step for future work.
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Fig. 6.5: Experimentally retrieved ∆ (left-hand side) and ε (right-hand side) for the 4–
th core. As seen from the legends, each height level of the figure corresponds to a force
direction.
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6.3. Future Works

The immediate next steps for this chapter involve completing the characterization

of Pj(θ). As previously mentioned, one approach to improve our toy model would

be to consider the displacement of the j-th core relative to the center of the fiber,

finding the associated θj to each core. Alternatively, quantum process tomography

could be performed for each force direction, since we have enough orthonormal basis

elements (of the polarization space) to fully characterize the applied process.

Once characterized, the transformations could be applied to MCF interferometry,

potentially enabling polarization or phase control in such systems. It is worth noting

that simple characterization of the effect of IPCs on MCFs has not yet been reported

in the literature.

Developing a simple model for polarization control in MCFs could also be quite

relevant for telecommunications, since many opto-electronic devices work for spe-

cified polarization modes. In addition, more complicated interferometers involving

both spatial and polarization modes could be explored. In such cases, the IPC could

enable coupling between these two degrees of freedom.



Chapter 7

Conclusions and Outlook

Multi-core fibers and quantum mechanics have significantly enhanced the capabilities

of quantum information, communication and metrology. This thesis has explored in-

tegrating MCFs with quantum light to perform unitary transformations, implement

precise and/or robust multi-port interferometric sensors, and control polarization

within the fiber. These studies highlight the versatility of optical fiber-integrated

devices and their potential to address current technological limitations.

In Chapter 4, we studied light propagation through coupled waveguide arrays,

given the equivalence between waveguides and optical fiber cores. First, squeezing

dynamics in an optical dimer were examined, revealing three conserved quantities

over the propagation. These conserved quantities provide insights into the interplay

between single- and two-mode squeezing, potentially simplifying quantum state en-

gineering and enabling various applications in quantum computing and information

processing. The future of this study relies on a deeper understanding of squeezing

dynamics and extending these results to higher dimension.
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Later in Chapter 4, we modeled a 4-port beam splitter as a coupled wavegui-

de system with diagonal coupling. It was demonstrated that the relative coupling

strengths between side and diagonal couplings completely parameterizes the family

of complex Hadamard matrices. Notably, the system is capable of performing a QFT.

This makes the device a promising candidate for implementing quantum algorithms

and enhancing quantum information processing. Future work should focus on the

experimental verification of this result.

In Chapter 5, we explored multi-port MZIs, highlighting the importance of the

parameterization choice in adjusting uncertainties, alongside a discussion of the phy-

sical meaning. We demonstrated that introducing squeezed light enhances precision

beyond the SQL for multi-parameter estimation in both 3×3 and 4×4 MZIs. Addi-

tionally, selecting the measured operator allowed for distinct uncertainty behaviors,

where certain uncertainties became independent of specific parameters. The achie-

ved precision, specially in the 4×4 interferometer, is comparable to that of standard

2×2 interferometers, with the added advantage of simultaneous estimation of more

parameters. These results have direct applications in quantum metrology, improving

parameter estimation, and in telecommunications, enhancing capacity and security

of information transfer. Future work should explore alternative parameter sets, in-

put states, and measured operator, as well as experimental implementation of these

results.

Finally, in Chapter 6, we presented preliminary work on reconstructing the IPC

transformations for each core of a 4-core MCF. Our results indicate that the trans-

formations in MCFs are comparable to those in SMFs, as evidenced by similar tra-



91

yectories on the Bloch sphere. The dependence of the relative phase induced by the

IPC on the number of screw turns was modeled by directly appying the theoretical

model for a SMF. This data suggests that certain configurations can provide finer

control over polarization. Controlling the polarization within the fiber is critical for

optimal interferometry and enables applications in quantum information by encoding

data in the polarization state. Future efforts should include gathering additional data

for statistical analysis, refining the theoretical model, and experimentally verifying

polarization controllability. As stated throughout this thesis, controlling polarization

is essential for achieving high-quality interference. Consequently, this chapter repre-

sents a foundational step towards the experimental integration of MCFs in metrology

and the practical implementation of the results in earlier chapters.



References
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